Calculation of load capacity of spur and helical gears

Keyword(s):  
Author(s):  
Morimasa Nakamura ◽  
Atsushi Katayama ◽  
Ichiro Moriwaki

A hot-roll finishing was proposed as a simple finishing method for plastic gears. In the hot-roll finishing, plastic work gears are finished by meshing with a heated copper die wheel. In the previous study, a hot-roll finishing rig for plastic gears was developed, and it was confirmed that tooth profiles of hobbed plastic gears are improved by the finishing. Thus, the hot-roll finishing could also be effective for injection-molded plastic gears. In the present paper, appropriate hot-roll finishing procedures for injection-molded polyoxymethylene (POM) helical gears were pursued. In the injection molding, an inadequate mold easily allows large slope deviations on a tooth profile and trace. The hot-roll finishing can reduce the slope deviations, but induces form deviations especially on the profile. Tests of injection-molded and hot-roll-finished plastic gears were performed on a self-produced gear roller test rig and a self-produced fatigue rig, and a transmission error and load capacity were estimated. Compared with injection-molded gears, hot-roll-finished plastic gears showed small transmission error, while a load capacity was at the almost same level. As a result, the hot-roll finishing is effective for improving a transmission error of injection-molded plastic gears.


Author(s):  
Jose´ I. Pedrero ◽  
Mariano Arte´s ◽  
Carlos Garci´a-Masia´

The minimum number of teeth to avoid undercut on involute spur and helical gears depends on the pressure angle, among some other geometrical parameters. Higher number of teeth is required if the pressure angle becomes smaller. However, the contact ratio may be increased by reducing the pressure angle, which means the load is distributed along a longer line of contact. In many cases, even if undercut arises and teeth are weakened, both effects may result in higher load capacity for the gears. This paper presents a study on the influence of the pressure angle on the contact ratio, and through it on the length of contact and the load capacity, including a discussion on the condition to improve the load capacity by reducing the pressure angle beyond the undercut limit.


Author(s):  
Bernd-Robert Ho¨hn ◽  
Peter Oster ◽  
Gregor Steinberger

In experimental analyzes the pitting load capacity of case carburized spur and helical gears is determined in back-to-back test rigs. The research program with one type of spur and 8 types of helical gears includes tests for the determination of influences of varying load distribution, overlap ratio and transmission ratio. The test results are presented and evaluated on the basis of the pitting load capacity calculation methods of ISO 6336-2/DIN 3990, part 2. A new DIN/ISO compatible calculation method for pitting load capacity is presented. This new calculation method comprehends helical gears more adequate than ISO 6336-2 / DIN 3990, part 2 and has the possibility to consider tooth flank modifications. The new calculation method is applied on test results and gears of a calculation study. It shows better accordance with the experimental test results than the present ISO 6336-2 / DIN 3990, part 2.


Sign in / Sign up

Export Citation Format

Share Document