Metallic materials. Tensile stress relaxation testing

2015 ◽  
2012 ◽  
Vol 353 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Kai Cheng ◽  
M. Leys ◽  
S. Degroote ◽  
H. Bender ◽  
P. Favia ◽  
...  

1996 ◽  
Vol 436 ◽  
Author(s):  
J. P. Lokker ◽  
J. F. Jongste ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

AbstractMechanical stress and its relaxation in aluminum metallization in integrated circuits (IC) are a major concern for the reliability of the material. It is known that adding Cu improves the reliability but complicates plasma etching and increases corrosion sensitivity. The mechanical behavior of AlVPd, AlCu and Al blanket films is investigated by wafer curvature measurements. During thermal cycling between 50°C and 400°C the highest tensile stress is found in AlVPd. In a subsequent experiment, the cooling was interrupted at several temperatures to investigate the stress behavior during an eight hour isothermal treatment. Isothermal stress relaxation has been observed in the three types of films and is discussed.


2006 ◽  
Vol 978 ◽  
Author(s):  
Silvester John Noronha ◽  
Nasr M Ghoniem

AbstractWe present a model for the brittle - ductile transition in heterogenous metallic materials based on two dimensional discrete dislocation simulations of crack-tip plasticity. The sum of elastic fields of the crack and the emitted dislocations defines an elasto-plastic crack field. Effects of crack-tip blunting of the macrocrack are included in the simulations. The plastic zone characteristics are found to be in agreement with continuum models, with the added advantage that the hardening behavior comes out naturally in our model. The present model is composed of a macrocrack with microcracks ahead of its tip. These microcracks represent potential fracture sites at internal inhomogenities, such as brittle precipitates. Dislocations that are emitted from the crack-tip account for plasticity. When the tensile stress at the microcrack situated along the crack plane attains a critical value over a distance fracture is assumed to take place. The brittle-ductile transition curve is obtained by determining the fracture toughness at various temperatures. Factors that contribute to the sharp upturn in fracture toughness with temperature are found to be: the decrease in tensile stress ahead of the crack tip due to increase in blunting, and the increase in dislocation mobility. The inherent scatter in fracture toughness measurements are studied by using a size distribution for microcracks, distributed on the crack plane of the macrocrack. The scatter in fracture toughness measurements is found to be an effect of the size distribution of microcracks rather than their spatial distribution on the matrix ahead of the crack plane. When compared, the obtained results are in agreement with the existing experimental data.


1962 ◽  
Vol 17 (8) ◽  
pp. 726-748 ◽  
Author(s):  
Kiyohisa Fujino ◽  
Kazuo Senshu ◽  
Tzuneo Horino ◽  
Hiromichi Kawai

Sign in / Sign up

Export Citation Format

Share Document