Measurement of wet gas flow by means of pressure differential devices inserted in circular cross-section conduits

2012 ◽  
2006 ◽  
Vol 963 ◽  
Author(s):  
Goutam Koley ◽  
Zhihua Cai

ABSTRACTGaN nanostructure synthesis was done in a quartz tube furnace using ammonia and liquid Ga as precursors, and hydrogen as the carrier gas. Ni nanoparticles formed due to annealing, has been used as the catalyst layer, facilitating vapor-liquid-solid growth of the nanostructures. The growth process resulted in the formation of two types of structures, straight nanowires, and irregular growth sometimes resulting in nanospirals. Growth using uniform distribution of catalyst over the entire surface resulted in growth of straight nanowires, while growth performed on catalyst patterned surface resulted in growth of nanospirals. The diameter of the nanowires varied from 20 – 100 nm, while for spirals the cross-sectional diameters were found to be in the range of 100 nm – 1 micron, and spiral diameters in the range of several microns. Using the present growth system and gas flow set-up, it was possible to synthesize ultra-long nanowires and spirals, with overall lengths exceeding 70 microns. The regular straight nanowires were found to have a smooth circular cross-section, while the irregular wires and nanospirals were found to have a very rough surface with approximate hexagonal or triangular cross-sections. Some of the spirals changed into straight nanowires with uniform triangular cross-sections. While more investigations are required to fully establish their structures, based on preliminary characterization and past studies, we conclude that the nanowires with circular cross-sections grow along the c-direction [0001], while the spirals and consequent triangular cross-section nanowires grow along one of the non-polar directions. The formation of spirals themselves may be related to the polarization properties of GaN, similar to those predicted for ZnO nanosprings and nanoribbons.


A theoretical treatment is given of gas flow along a tube of circular cross-section for arbitrary ratio of intermolecular collision mean free path to tube radius. A general solution is obtained of the Boltzmann equation which is valid for any intermolecular collision operator. The spatial variation of this solution is exhibited explicitly and its velocity dependence is given in terms of the solution of certain integral equations.


1982 ◽  
Vol 116 ◽  
pp. 393-409 ◽  
Author(s):  
D. Weihs ◽  
I. Frankel

The cross-section shape and stability of a liquid cylinder moving perpendicularly to its axis in a gaseous medium is studied. Such liquid cylinders are formed during the break-up process of thin, rapidly moving liquid sheets, appearing in spray and atomization processes. The equilibrium shape is affected mainly by two factors: the dynamic-pressure distribution in the gas flow and the surface tension on the liquid boundary. The former tends to distort the liquid cross-section into an oval shape while the latter tends to restore the circular cross-section.A series expansion for the shape of the cylinder cross-section was determined by assuming incompressible potential flow, neglecting the effects of body forces and internal circulation in the liquid.The stability analysis shows that in the range of low Weber numbers the cylinder break-up is due to the divergence of varicose perturbations. The wavenumber of the most rapidly growing perturbation, its rate of growth and the maximal wavenumber for which varicose instability occurs, are all found to decrease as the Weber number grows, owing to a pressure distribution caused by the varicose distortion, which tends to reduce these perturbations.


Sign in / Sign up

Export Citation Format

Share Document