Foamed blastfurnace slag for concrete aggregate

2015 ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4245
Author(s):  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Wojciech Sas

The construction sector is currently struggling with the reuse of waste originating from the demolition and modernization of buildings and roads. Furthermore, old buildings are gradually being replaced by new structures. This brings a significant increase of concrete debris to waste landfills. To prevent this, many studies on the possibilities of recycling concrete, known as recycled concrete aggregate (RCA), have been done. To broaden the applicability of reused concrete, an understanding of its properties and engineering behavior is required. A difficulty in sustainable, proper management of RCA is the shortage of appropriate test results necessary to assess its utility. For this reason, in the present study, the physical, deformation, and stiffness properties of RCA with gravely grain distribution were analyzed carefully in the geotechnical laboratory. To examine the mentioned properties, an extensive experimental program was planned, which included the following studies: granulometric analysis, Proctor and oedometer tests, as well as resonant column tests. The obtained research results show that RCA has lower values of deformation and stiffness parameters than natural aggregates. However, after applying in oedometer apparatus repetitive cycles of loading/unloading/reloading, some significant improvement in the values of the parameters studied was noticed, most likely due to susceptibility to static compaction. Moreover, some critical reduction in the range of linear response of RCA to dynamic loading was observed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 717
Author(s):  
Andrzej Głuchowski ◽  
Raimondas Šadzevičius ◽  
Rytis Skominas ◽  
Wojciech Sas

Buried pipe design requires knowledge about the fill to design the backfill structure. The interaction between the backfill envelope and the pipe impacts the structural performance of the buried pipe. The backfill material and compaction level respond to the backfill’s overall strength and, therefore, for pipe-soil interaction. The strength of backfill material is described in terms of modulus of soil reaction E’ and constrained modulus Eode. As the E’ is an empirical parameter, the Eode can be measured in the laboratory by performing the oedometer tests. In this study, we have performed extensive oedometric tests on five types of anthropogenic materials (AM). Three of them are construction and demolition materials (C–D materials) namely, recycled concrete aggregate (RCA), crushed brick (CB), and recycled asphalt pavement (RAP). Two of them are industrial solid wastes (ISW) namely, fly ash and bottom slag mix (FA + BS) and blast furnace slag (BFS). The results of the tests revealed that AM behaves differently from natural aggregates (NA). In general, the Eode value for AM is lower than for NA with the same gradation. Despite that, some of AM may be used as NA substitute directly (RCA or BFS), some with special treatment like CB and some with extra compaction efforts like RAP or FA + BS.


Sign in / Sign up

Export Citation Format

Share Document