Tissue-engineered medical products. Bioactive ceramics. Method to measure cell migration in porous materials

2018 ◽  
2011 ◽  
Vol 493-494 ◽  
pp. 836-839
Author(s):  
Masanori Kikuchi

International standard for test method on cell migration into a scaffold is one of the important things to evaluate the scaffold. The "cell migration" ability can divide into two parts. One is infiltration of cell suspension before in vitro cell culture on the scaffold. Another is migration of adherent cells from the edge of scaffold. The latter one could be closely related to cell/tissue migration into the scaffold when it is implanted into bone. Thus, in the present study, the cell migration ability was evaluated toward standardization of in vitro evaluation method for in vivo cell/tissue migration ability using several bioactive ceramics and composites including commercially available materials. The specimen 5 mm in diameter was placed on confluent MG63 cell layer. After 3 days incubation, the specimen was harvested, fixed and divided into two parts. Inside and outside of the scaffold were stained by Giemsa and observed by optical microscopy. In addition, the same specimen was critical point dried and observed with scanning electron microscope (SEM). From microscopic observation, MG63 cells migrated to pore walls of the specimen as well as a sidewall. Maximum migration distances were different among specimens and seemed to depend on pore structure and size as well as porosity. Similar behaviors were observed with SEM.Even relations between this test method and in vivo cell/tissue migration have not been evaluated, this test method is potentially a good method for testing cell migration ability of porous bioactive ceramics as well as other porous scaffold materials.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document