Electrodeposited coatings and related finishes. Electroless Ni-P-ceramic composite coatings

2020 ◽  
2009 ◽  
Vol 25 (5) ◽  
pp. 361-366 ◽  
Author(s):  
X. G. Hu ◽  
W. J. Cai ◽  
Y. F. Xu ◽  
J. C. Wan ◽  
X. J. Sun

2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


1996 ◽  
Vol 74 (3) ◽  
pp. 99-102 ◽  
Author(s):  
Jiao-ning Tang ◽  
You-bei Xie

Wear ◽  
2000 ◽  
Vol 239 (1) ◽  
pp. 111-116 ◽  
Author(s):  
V.V.N Reddy ◽  
B Ramamoorthy ◽  
P.Kesavan Nair

2021 ◽  
pp. 1-34
Author(s):  
Peter Renner ◽  
Swarn Jha ◽  
Yan Chen ◽  
Tariq Chagouri ◽  
Serge Kazadi ◽  
...  

Abstract Effective design of corrosion-resistant coatings is critical for the protection of metals and alloys. Many state-of-the-art corrosion-resistant coatings are unable to satisfy the challenges in extreme environments for tribological applications, such as elevated or cryogenic temperatures, high mechanical loads and impacts, severe wear, chemical attack, or a combination of these. The nature of challenging conditions demands that coatings have high corrosion and wear resistance, sustained friction control, and maintain surface integrity. In this research, multi-performance metal-ceramic composite coatings were developed for applications in harsh environments. These coatings were developed with an easy to fabricate, low-cost, and safe procedure. The coating consisted of boron nitride, graphite, silicon carbide, and transition metals such as chromium or nickel using epoxy as vehicle and bonding agent. Salt spray corrosion tests showed that 1010 carbon steel (1/4 hard temper) substrates lost 20-100× more mass than the coatings. The potentiodynamic polarization study showed better performance of the coatings by seven orders of magnitude in terms of corrosion relative to the substrate. Additionally, the corrosion rates of the coatings with Ni as an additive were five orders of magnitude lower than reported. The coefficient of friction of coatings was as low as 0.1, five to six times lower than that of epoxy and lower than a wide range of epoxy resin-based coatings found in literature. Coatings developed here exhibited potential in applications in challenging environments for tribological applications.


2017 ◽  
pp. 1303-1326
Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Electroless nickel coatings are widely popular in various industrial sectors due to their excellent tribological properties. The present study considers optimization of coating parameters along with annealing temperature to improve microhardness and corrosion resistance of Ni-P-TiO2 composite coatings. Grey relational analysis is used to find out the optimal combination of coating parameters. From the analysis, it is confirmed that annealing temperature of the coating has the most significant effect and amount of titanium particles in the coating has some significant effect on corrosion properties of the coating. The same trend is observed in case of combined study of corrosion behavior and microhardness. The surface morphology, phase transformation and the chemical composition are examined using scanning electron microscopy, X-ray diffraction analysis and energy dispersive analysis respectively. The Ni-P-TiO2 composite coating revealed nodular structure with almost uniform distribution of titanium particles and it turns in to crystalline structure after heat treatment.


Sign in / Sign up

Export Citation Format

Share Document