Technical specification for flame detector system of boiler

2021 ◽  
Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


2019 ◽  
pp. 3-8
Author(s):  
N.Yu. Bobrovskaya ◽  
M.F. Danilov

The criteria of the coordinate measurements quality at pilot-experimental production based on contemporary methods of quality management system and traditional methods of the measurements quality in Metrology are considered. As an additional criterion for quality of measurements, their duration is proposed. Analyzing the problem of assessing the quality of measurements, the authors pay particular attention to the role of technological heredity in the analysis of the sources of uncertainty of coordinate measurements, including not only the process of manufacturing the part, but all stages of the development of design and technological documentation. Along with such criteria as the degree of confidence in the results of measurements; the accuracy, convergence, reproducibility and speed of the results must take into account the correctness of technical specification, and such characteristics of the shape of the geometric elements to be controlled, such as flatness, roundness, cylindrical. It is noted that one of the main methods to reduce the uncertainty of coordinate measurements is to reduce the uncertainty in the initial data and measurement conditions, as well as to increase the stability of the tasks due to the reasonable choice of the basic geometric elements (measuring bases) of the part. A prerequisite for obtaining reliable quality indicators is a quantitative assessment of the conditions and organization of the measurement process. To plan and normalize the time of measurements, the authors propose to use analytical formulas, on the basis of which it is possible to perform quantitative analysis and optimization of quality indicators, including the speed of measurements.


2020 ◽  
Vol 6 ◽  
pp. 17-40
Author(s):  
Muralitheran Munusamy

Sound or audio engineering is a branch of the field of engineering, which involves the process of recording sound and reproducing it by various means, as well as storing in order to be reproduced later. Known as sound or audio engineers, these trained professionals work in a variety of sound production fields and expert in recording methods. They can be instrumental to implement the affordable technologies and technical process to distribute the audio data hence, making it accessible for future generations. The current role of these engineers not only to perform or limited to recording session but they create metadata for archiving and preservation for future needs. Currently, product sleeves of ethnographic recordings represent no technical elements of how traditional music recordings are produced. The product details focus only to some extent on historical elements and musical notation. To an audio archivist, declaring what devices are in a recording is not linked with preservation data. Apart from the format, the sleeved design, technical specification is essential to other social scientists such as audio engineer and field recordist of the future. The aim of the present research is to capture optimum dynamic range of the sound and applying a signal processing that would not alter the tonality, timbre and harmonic of the sound. Further applying a suitable information storage for the metadata to be preserve or archived for future accessing and reproduction.


Sign in / Sign up

Export Citation Format

Share Document