Monotone iterative techniques for solutions of nonlinear second order ordinary differential equations

1990 ◽  
Vol 1 (1) ◽  
pp. 259-267
Author(s):  
Assohoun Adje
2002 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Tadeusz Jankowski

Abstract The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems.


2006 ◽  
Vol 49 (2) ◽  
pp. 170-184
Author(s):  
Richard Atkins

AbstractThis paper investigates the relationship between a system of differential equations and the underlying geometry associated with it. The geometry of a surface determines shortest paths, or geodesics connecting nearby points, which are defined as the solutions to a pair of second-order differential equations: the Euler–Lagrange equations of the metric. We ask when the converse holds, that is, when solutions to a system of differential equations reveals an underlying geometry. Specifically, when may the solutions to a given pair of second order ordinary differential equations d2y1/dt2 = f (y, ẏ, t) and d2y2/dt2 = g(y, ẏ, t) be reparameterized by t → T(y, t) so as to give locally the geodesics of a Euclidean space? Our approach is based upon Cartan's method of equivalence. In the second part of the paper, the equivalence problem is solved for a generic pair of second order ordinary differential equations of the above form revealing the existence of 24 invariant functions.


Sign in / Sign up

Export Citation Format

Share Document