Liquid immiscibility in silicate melt inclusion in plagioclase phenocrysts

1981 ◽  
Vol 104 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Anthony R. Philpotts
2005 ◽  
Vol 223 (1-3) ◽  
pp. 1-2
Author(s):  
Csaba Szabó ◽  
Alfons M. van den Kerkhof ◽  
Robert J. Bodnar
Keyword(s):  

2019 ◽  
Vol 27 (5) ◽  
pp. 577-597
Author(s):  
Yu. B. Shapovalov ◽  
A. R. Kotelnikov ◽  
I. N. Suk ◽  
V. S. Korzhinskaya ◽  
Z. A. Kotelnikova

The results of an experimental study of phase relations and distribution of elements in silicate melt–salt systems (carbonate, phosphate, fluoride, chloride) melt, silicate melt I–silicate melt II, and also in fluid – magmatic systems in the presence of alkali metal fluorides are presented. Salt extraction of a number of ore elements (Y, REE, Sr, Ba, Ti, Nb, Zr, Ta, W, Mo, Pb) was studied in liquid immiscibility processes in a wide temperature range of 800–1250°С and pressure of 1–5.5 kbar. It is shown that the partition coefficients are sufficient for the concentration of ore elements in the quantity necessary for the genesis of ore deposits. In the fluid-saturated melt of trachyrhyolite, the separation into two silicate liquids has been determined. The partition coefficients of a number of elements (Sr, La, Nb, Fe, Cr, Mo, K, Rb, Cs) between phases L1 and L2 has been obtained. The interaction processes of a heterophase fluid in the granite (quartz)–ore mineral–heterophase fluid (Li, Na, K-fluoride) system were studied at 650–850°C and P = 1 kbar. The formation of the phase of a highly alkaline fluid–saturated silicate melt – Ta and Nb concentrator is shown as a result of the reaction of the fluid with the rock and ore minerals.


Nature ◽  
1955 ◽  
Vol 176 (4476) ◽  
pp. 305-305 ◽  
Author(s):  
W. A. CASSIDY ◽  
E. R. SEGNIT

2020 ◽  
Vol 53 ◽  
pp. 53-60
Author(s):  
Cuiyu Zhang ◽  
Xuan Ge ◽  
Qiaodan Hu ◽  
Fan Yang ◽  
Pingsheng Lai ◽  
...  

2001 ◽  
Vol 65 (6) ◽  
pp. 725-735 ◽  
Author(s):  
P. Limtrakun ◽  
Khin Zaw ◽  
C. G. Ryan ◽  
T. P. Mernagh

AbstractThe Denchai gem sapphire deposits in Phrae Province, northern Thailand are closely associated with late Cenozoic alkaline basaltic rocks. The sapphires occur in alluvial placer deposits in palaeo-channels at shallow depths. Electron microprobe analysis of minor and trace element contents (Fe, Ti, Cr, Ga and V) of the sapphires indicate the following oxide abundances: Fe2O3 (0.32–1.98 wt.%), TiO2 (0.01–0.23 wt.%), Cr2O3 (<0.01 wt.%), Ga2O3 (0.01–0.03 wt.%) and V2O5 (<0.03 wt.%). Optical studies of sapphires revealed three types of primary fluid/melt inclusions. CO2-rich inclusions (Type I) contain three phases (LH2O + LCO2 + V) with the vapour phase comprising <10–15 vol.%. The presence of CO2 was confirmed by microthermometry and laser Raman analysis. Polyphase inclusions (Type II) (vapour + liquid + solid) contain a fluid bubble (20–30 vol.%), an aqueous phase (10–15 vol.%) and several solid phases. Silicate-melt inclusions (Type III) comprise vapour bubbles, silicate glass and solid phases. Proton-induced X-ray emission (PIXE) analysis revealed high concentrations of K (~;4 wt.%) as well as Ca (~;0.5 wt.%), Ti (~;1 wt.%), Fe (~;2 wt.%), Mn (~;0.1 wt.%), V (<0.03 wt.%), Rb (~;70 ppm) and Zr (~;200 ppm) in the silicate glass. The Ga2O3 abundances and Cr2O3/Ga2O3 values (<1) of the sapphires favour their formation by magmatic processes. The presence of CO2-rich fluids and high K concentrations in the silicate melt inclusions link the origin of the Denchai gem sapphires to CO2-rich alkaline magmatism.


2017 ◽  
Vol 471 ◽  
pp. 92-110 ◽  
Author(s):  
Vadim S. Kamenetsky ◽  
Michael Zelenski ◽  
Andrey Gurenko ◽  
Maxim Portnyagin ◽  
Kathy Ehrig ◽  
...  

2018 ◽  
Vol 478 ◽  
pp. 112-130 ◽  
Author(s):  
Vadim S. Kamenetsky ◽  
Michael Zelenski ◽  
Andrey Gurenko ◽  
Maxim Portnyagin ◽  
Kathy Ehrig ◽  
...  

Lithos ◽  
2012 ◽  
Vol 152 ◽  
pp. 23-39 ◽  
Author(s):  
Victor V. Sharygin ◽  
Vadim S. Kamenetsky ◽  
Anatoly N. Zaitsev ◽  
Maya B. Kamenetsky

Author(s):  
C. M. Jantzen ◽  
D. G. Howitt

The mullite-SiO2 liquidus has been extensively studied, and it has been shown that the flattening of the liquidus is related to the existence of a metastable region of liquid immiscibility at sub-liquidus temperatures which is detectable by transmission electron microscopy (TEM) (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document