silicic volcanic
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 27)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Sophie Ellen Wilkinson

<p>Explosive silicic volcanic eruptions blanket widespread terrestrial and marine areas in ash, and have a profound effect on climate and local ecosystems. Short-term climate effects are caused by the dispersal of ash, but the injection of gas into the stratosphere, with sulphur being particularly important, drives a cooling of the climate that can last several years. These prolonged perturbations have been observed and recorded in recent decades, but despite the importance of the ocean in regulating global atmospheric climate, little is known about how and to what extent the climate signal produced by volcanic eruptions alters the oceanic environment. As the composition of foraminifera tests is highly sensitive to changes in the surrounding environment, a significant sea surface temperature decrease following a large silicic volcanic eruption may be recorded in the tests of live planktic foraminifera, now preserved in marine sediments. This study examines marine cores (and foraminifera within) that contain tephra units from three major volcanic events to determine if changes can be resolved in ocean temperature and/or foraminifera test morphology following large silicic eruptions.  The Holocene Taupo, Waimihia and Mamaku tephra units have been identified in a series of marine sediment cores collected from areas with high sedimentation rates off the east coast of North Island, New Zealand. The sources of these eruptions were from two calderas within the Taupo Volcanic Zone, one of the most active and important rhyolitic regions in the world. Sampling of sediment and foraminifera from these cores has been undertaken at 0.5 cm intervals above and below each tephra. This equates to varying sampling resolutions between cores of 5-30 years, with sufficient sampling taken to establish a stratigraphic record of >100 years either side of each tephra unit. A detailed stratigraphy was undertaken on the sediment surrounding all tephra units, including grain size and CaCO₃ analyses, to identify primary and secondary tephra deposits. One core, Tan0810-12 that contained solely Taupo tephra, was selected for foraminiferal analyses to determine changes in ocean temperature and foraminifera test morphology following this eruption. This core was selected based on the results of the stratigraphic analyses that identified the tephra as a primary deposit with minimal bioturbation above the ash layer and a very high sedimentation rate that enabled sub-decadal scale sampling.  Scanning electron microscope imaging was employed to identify the presence of surface contaminants on and within the foraminifera tests and allowed observations of test morphology and size. The morphologies of planktic foraminifera species Globigerinoides ruber and Globigerina bulloides showed no obvious change following the Taupo eruption. The Globigerinoides ruber test sizes distinctly decreased for a period after the eruption, while Globigerina bulloides tests slightly increased in size, correlating well with a decrease in sea surface temperature after the eruption as these species prefer warmer and colder temperatures, respectively. This suggests there is potential for test size to be employed as a proxy for temperature change in conjunction with geochemical analyses. Mg/Ca temperature analyses were conducted in situ using laser ablation inductively coupled plasma mass spectrometry. Both species indicated a decrease in sea surface temperatures when comparing results from tests collected below the tephra deposit to those above. Further results indicate ocean temperature may not have recovered for more than 65 years after the eruption. Such a rapid change in the oceanic environment not only has drastic implications for marine ecosystems but also atmospheric climate, and therefore, terrestrial ecosystems. To reduce the margin of error and determine a more exact value of temperature change following the eruption a greater population of foraminifera is needed. Nonetheless, this study highlights the potential of this method in determining how the oceans are impacted by volcanism and how further research is needed to determine the effects of volcanic eruptions on past and future climate.</p>


2021 ◽  
Author(s):  
◽  
Sophie Ellen Wilkinson

<p>Explosive silicic volcanic eruptions blanket widespread terrestrial and marine areas in ash, and have a profound effect on climate and local ecosystems. Short-term climate effects are caused by the dispersal of ash, but the injection of gas into the stratosphere, with sulphur being particularly important, drives a cooling of the climate that can last several years. These prolonged perturbations have been observed and recorded in recent decades, but despite the importance of the ocean in regulating global atmospheric climate, little is known about how and to what extent the climate signal produced by volcanic eruptions alters the oceanic environment. As the composition of foraminifera tests is highly sensitive to changes in the surrounding environment, a significant sea surface temperature decrease following a large silicic volcanic eruption may be recorded in the tests of live planktic foraminifera, now preserved in marine sediments. This study examines marine cores (and foraminifera within) that contain tephra units from three major volcanic events to determine if changes can be resolved in ocean temperature and/or foraminifera test morphology following large silicic eruptions.  The Holocene Taupo, Waimihia and Mamaku tephra units have been identified in a series of marine sediment cores collected from areas with high sedimentation rates off the east coast of North Island, New Zealand. The sources of these eruptions were from two calderas within the Taupo Volcanic Zone, one of the most active and important rhyolitic regions in the world. Sampling of sediment and foraminifera from these cores has been undertaken at 0.5 cm intervals above and below each tephra. This equates to varying sampling resolutions between cores of 5-30 years, with sufficient sampling taken to establish a stratigraphic record of >100 years either side of each tephra unit. A detailed stratigraphy was undertaken on the sediment surrounding all tephra units, including grain size and CaCO₃ analyses, to identify primary and secondary tephra deposits. One core, Tan0810-12 that contained solely Taupo tephra, was selected for foraminiferal analyses to determine changes in ocean temperature and foraminifera test morphology following this eruption. This core was selected based on the results of the stratigraphic analyses that identified the tephra as a primary deposit with minimal bioturbation above the ash layer and a very high sedimentation rate that enabled sub-decadal scale sampling.  Scanning electron microscope imaging was employed to identify the presence of surface contaminants on and within the foraminifera tests and allowed observations of test morphology and size. The morphologies of planktic foraminifera species Globigerinoides ruber and Globigerina bulloides showed no obvious change following the Taupo eruption. The Globigerinoides ruber test sizes distinctly decreased for a period after the eruption, while Globigerina bulloides tests slightly increased in size, correlating well with a decrease in sea surface temperature after the eruption as these species prefer warmer and colder temperatures, respectively. This suggests there is potential for test size to be employed as a proxy for temperature change in conjunction with geochemical analyses. Mg/Ca temperature analyses were conducted in situ using laser ablation inductively coupled plasma mass spectrometry. Both species indicated a decrease in sea surface temperatures when comparing results from tests collected below the tephra deposit to those above. Further results indicate ocean temperature may not have recovered for more than 65 years after the eruption. Such a rapid change in the oceanic environment not only has drastic implications for marine ecosystems but also atmospheric climate, and therefore, terrestrial ecosystems. To reduce the margin of error and determine a more exact value of temperature change following the eruption a greater population of foraminifera is needed. Nonetheless, this study highlights the potential of this method in determining how the oceans are impacted by volcanism and how further research is needed to determine the effects of volcanic eruptions on past and future climate.</p>


2021 ◽  
Author(s):  
Raymond Sullivan ◽  
Morgan D. Sullivan ◽  
Stephen W. Edwards ◽  
Andrei M. Sarna-Wojcicki ◽  
Rebecca A. Hackworth ◽  
...  

ABSTRACT The mid-Cenozoic succession in the northeast limb of the Mount Diablo anticline records the evolution of plate interactions at the leading edge of the North America plate. Subduction of the Kula plate and later Farallon plate beneath the North America plate created a marine forearc basin that existed from late Mesozoic to mid-Cenozoic times. In the early Cenozoic, extension on north-south faults formed a graben depocenter on the west side of the basin. Deposition of the Markley Formation of middle to late? Eocene age took place in the late stages of the marine forearc basin. In the Oligocene, the marine forearc basin changed to a primarily nonmarine basin, and the depocenter of the basin shifted eastward of the Midland fault to a south-central location for the remainder of the Cenozoic. The causes of these changes may have included slowing in the rate of subduction, resulting in slowing subsidence, and they might also have been related to the initiation of transform motion far to the south. Two unconformities in the mid-Cenozoic succession record the changing events on the plate boundary. The first hiatus is between the Markley Formation and the overlying Kirker Formation of Oligocene age. The succession above the unconformity records the widespread appearance of nonmarine rocks and the first abundant appearance of silicic volcanic detritus due to slab rollback, which reversed the northeastward migration of the volcanic arc to a more proximal location. A second regional unconformity separates the Kirker/Valley Springs formations from the overlying Cierbo/Mehrten formations of late Miocene age. This late Miocene unconformity may reflect readjustment of stresses in the North America plate that occurred when subduction was replaced by transform motion at the plate boundary. The Cierbo and Neroly formations above the unconformity contain abundant andesitic detritus due to proto-Cascade volcanism. In the late Cenozoic, the northward-migrating triple junction produced volcanic eruptive centers in the Coast Ranges. Tephra from these local sources produced time markers in the late Cenozoic succession.


2021 ◽  
Vol 19 ◽  
Author(s):  
Karel Mach ◽  
Vladislav Rapprich ◽  
Martin Faměra ◽  
Martina Havelcová ◽  
Tomáš Matys Grygar ◽  
...  

We describe the occurrence and possible origin of rare beds 1–10cm thick and containing 20–70% of crandallite, a Ca-Al phosphate enriched in Sr and Ba, found within otherwise monotonous clay-rich lacustrine sediments of the Most Basin in the Central-European Neogene Ohře Rift system. The beds were formed at ca. 17.31, 17.06, and 16.88Ma, while the entire suite of monotonous clays of the Libkovice Member was deposited between 17.46 and 16.65Ma. Trace-element and organic geochemistry, Ar-Ar geochronology and C-O-Sr isotope systematics are used to infer their source and processes leading to their formation. The most enigmatic aspect of the formation of the crandallite beds is the removal of a huge amount of phosphorus from its biogenic cycle in the lacustrine system, which was otherwise stable for ca. 0.8My. Formation of detritus-poor crandallite beds could result from some exceptional environmental disruptions that hindered transport of fine clastic material to the basin floor. Silicic volcanic activity in the area of the Pannonian Basin could have triggered this disruption. Crandallite could provide evidence of long-lasting droughts and acidification of the exogenic environment, as they are roughly coeval with the onset of the Miocene Climatic Optimum at ca. 17.0Ma.


2021 ◽  
pp. 48-51
Author(s):  
Eugene FILATOV ◽  
Ludmila FILATOVA

The geochemical and metallogenic specialization and zoning of structural-material complexes are analyzed. In the general systematic operational circuit of metallogenic forecasting and geological prospecting, processing the data on the geochemical specialization of geological formations and their constituents make it possible to perform a formational interpretation of anomalous geochemical fields revealed in the course of multipurpose geological and geochemical mapping; to subdivide the explored areas by the types of geological formations differing by their ore-bearing potential, with allocation of the most productive subformations, phases, and facies; and to provide quantitative estimates of the forecasted resources. Geochemical criteria of the ore-bearing potential of geological formations consist, first of all, in stable correlations between petrochemical features of ore-bearing rocks and their corresponding fluctuations of the ore composition (for example, the correlation of the potassium content of ore-hosting silicic volcanic rocks of the ore-bearing volcanogenic geological formations with the Cu/Pb ratio in ores of various types of deposits of the VMSD formational family). These criteria are to be taken into account in regional and local assessments of the perspective ore-bearing potential of geological formations.


2021 ◽  
Author(s):  
B. S. Ellis ◽  
D. Szymanowski ◽  
C. Harris ◽  
P.M.E. Tollan ◽  
J. Neukampf ◽  
...  

Abstract Lithium is an economically important element that is increasingly extracted from brines accumulated in continental basins. While a number of studies have identified silicic magmatic rocks as the ultimate source of dissolved brine lithium, the processes by which Li is mobilized remain poorly constrained. Here we focus on the potential of low-temperature, post-eruptive processes to remove Li from volcanic glass and generate Li-rich fluids. The rhyolitic glasses in this study (from the Yellowstone-Snake River Plain volcanic province in western North America) have interacted with meteoric water emplacement as revealed by textures and a variety of geochemical and isotopic signatures. Indices of glass hydration correlate with Li concentrations, suggesting Li is lost to the water during the water–rock interaction. We estimate the original Li content upon deposition and the magnitude of Li depletion both by direct in situ glass measurements and by applying a partition-coefficient approach to plagioclase Li contents. Across our whole sample set (19 eruptive units spanning ca. 10 m.y.), Li losses average 8.9 ppm, with a maximum loss of 37.5 ppm. This allows estimation of the dense rock equivalent of silicic volcanic lithologies required to potentially source a brine deposit. Our data indicate that surficial processes occurring post-eruption may provide sufficient Li to form economic deposits. We found no relationship between deposit age and Li loss, i.e., hydration does not appear to be an ongoing process. Rather, it occurs primarily while the deposit is cooling shortly after eruption, with δ18O and δD in our case study suggesting a temperature window of 40° to 70°C.


2021 ◽  
Vol 9 ◽  
Author(s):  
Réka Lukács ◽  
Marcel Guillong ◽  
Olivier Bachmann ◽  
László Fodor ◽  
Szabolcs Harangi

We present a novel approach to use zircon as a correlation tool as well as a monitor for magma reservoir processes in silicic volcanic systems. Fingerprinting eruption products based on trace element content and U-Pb dates of zircon offers a promising, previously underestimated tephra correlation perspective, particularly in cases where the main minerals and glass are altered. Using LA-ICP-MS analyses, a rapid and cost-effective method, this study presents U-Pb dates and trace element concentration data of more than 950 zircon crystals from scattered occurrences of early to mid-Miocene silicic ignimbrites in the northern Pannonian Basin, eastern-central Europe. This magmatic phase produced &gt;4000 km3 of erupted material, which provide unique stratigraphic marker horizons in central and southern Europe. The newly determined zircon U-Pb eruption ages for the distal pyroclastic deposits are between 17.5 and 14.3 Ma, comparable with the previously published ages of the main eruptive events. Multivariate discriminant analysis of selected trace element concentrations in zircon proved to be useful to distinguish the main volcanic units and to correlate the previously ambiguously categorized pyroclastic deposits with them. Using the zircon trace element content together with published glass data from crystal-poor ignimbrites, we determined the zircon/melt partition coefficients. The obtained values of the distinct eruption units are very similar and comparable to published data for silicic volcanic systems. This suggests that zircon/melt partition coefficients in calc-alkaline dacitic to rhyolitic systems are not significantly influenced by the melt composition at &gt;70 wt% SiO2 at near solidus temperature. The partition coefficients and zircon trace element data were used to calculate the equilibrium melt composition, which characterizes the eruption products even where glass is thoroughly altered or missing. Hence, our results provide important proxies for tephrostratigraphy in addition to yielding insights into the complex processes of silicic magma reservoirs.


2021 ◽  
pp. M55-2018-36 ◽  
Author(s):  
Teal R. Riley ◽  
Philip T. Leat

AbstractThe break-up of Gondwana during the Early–Middle Jurassic was associated with flood basalt volcanism in southern Africa and Antarctica (Karoo–Ferrar provinces), and formed one of the most extensive episodes of continental magmatism of the Phanerozoic. Contemporaneous felsic magmatism along the proto-Pacific margin of Gondwana has been referred to as a silicic large igneous province, and is exposed extensively in Patagonian South America, the Antarctic Peninsula and elsewhere in West Antarctica. Jurassic-age silicic volcanism in Patagonia is defined as the Chon Aike province and forms one of the most voluminous silicic provinces globally. The Chon Aike province is predominantly pyroclastic in origin, and is characterized by crystal tuffs and ignimbrite units of rhyolite composition. Silicic volcanic rocks of the once contiguous Antarctic Peninsula form a southward extension of the Chon Aike province and are also dominated by silicic ignimbrite units, with a total thickness exceeding 1 km. The ignimbrites include high-grade rheomorphic ignimbrites, as well as unwelded, lithic-rich ignimbrites. Rhyolite lava flows, air-fall horizons, debris-flow deposits and epiclastic deposits are volumetrically minor, occurring as interbedded units within the ignimbrite succession.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2019-207
Author(s):  
Simone Cogliati ◽  
Sarah C. Sherlock ◽  
Alison M. Halton ◽  
Alena Ebinghaus ◽  
Simon P. Kelley ◽  
...  

40Ar–39Ar dating of glass shards from silicic tuffs of the Ellensburg Formation (NW, USA) interbedding basaltic lavas yielded accurate, precise, reproducible plateau and isochron ages that are within error at the 2σ level. The age-spectra have flat plateaus and the inverse isochrons have atmospheric 40Ar/36Ar at the 2σ level. Ages of 12.00 ± 0.24, 11.37 ± 0.15, 10.67 ± 0.21 and 10.70 ± 0.18 Ma are consistent with the stratigraphy of four of the dated layers; the age of 10.77 ± 0.18 Ma for a fifth layer is at odds with the stratigraphy. This discrepancy arises due to the effect of glass alteration that induced K- and Ar-loss. There is no evidence of excess 40Ar or 39Ar recoil. The new ages indirectly constrain the timing of eruption of the lavas above and below the ash beds. This demonstrates that volcanic glass from interbeds can be used as an additional tool for indirectly dating basaltic lava sequences, which is independent of the lavas and complementary to other materials. Considering the numerous studies in which volcanic glass failed to provide reliable 40Ar–39Ar ages, additional and supportive constraints are still needed to assess the validity of the ages from glass shards.Supplementary material: A1 – sample location, stratigraphic position and depositional environments; A2 – electron microprobe information with calibration and sample data; A3 – Ar isotopic data of blanks and samples, data reduction software, J values, criteria for age calculation and images of age spectra and inverse isochrons are available at https://doi.org/10.6084/m9.figshare.c.5077705


2020 ◽  
Vol 6 (39) ◽  
pp. eaba7940 ◽  
Author(s):  
Fabian B. Wadsworth ◽  
Edward W. Llewellin ◽  
Jérémie Vasseur ◽  
James E. Gardner ◽  
Hugh Tuffen

Silicic volcanic activity has long been framed as either violently explosive or gently effusive. However, recent observations demonstrate that explosive and effusive behavior can occur simultaneously. Here, we propose that rhyolitic magma feeding subaerial eruptions generally fragments during ascent through the upper crust and that effusive eruptions result from conduit blockage and sintering of the pyroclastic products of deeper cryptic fragmentation. Our proposal is supported by (i) rhyolitic lavas are volatile depleted; (ii) textural evidence supports a pyroclastic origin for effusive products; (iii) numerical models show that small ash particles ≲10−5 m can diffusively degas, stick, and sinter to low porosity, in the time available between fragmentation and the surface; and (iv) inferred ascent rates from both explosive and apparently effusive eruptions can overlap. Our model reconciles previously paradoxical observations and offers a new framework in which to evaluate physical, numerical, and geochemical models of Earth’s most violent volcanic eruptions.


Sign in / Sign up

Export Citation Format

Share Document