THE ROLE OF FBROBLAST GROWTH FACTOR 23 (FGF 23) IN THE MINERAL AND BONE DISORDER (MBD) OF THE PATENTS WITH CHRONIC KIDNEY DISEASE

2016 ◽  
pp. 9-14
Author(s):  
Huu Vu Quang Nguyen ◽  
Tam Vo

Fibroblast growth factor 23 (FGF23) is a key regulator of phosphorus metabolism whose effects in patients with chronic kidney disease (CKD) have only recently begun to be appreciated. Recent study of this phosphaturic hormone has revealed new path-ways of mineral regulation in both individuals with normal kidney function and in patients with CKD. While the effects of FGF23 on mineral metabolism in CKD appears to be similar to its effects in individuals with normal kidney function, elevated levels of the protein in the CKD population have also been linked to kidney disease progression, altered skeletal histology, and increased mortality rates, relationships that have not been examined in the general population.Thus, potential differences in FGF23 metabolism accompany the elevated levels found in CKD patients and, although the exact pathophysiological consequences remain mostly unknown, elevated FGF23 levels appear to contribute to major complications of CKD that plague both adults and children. Key words: FGF23, chronic kidney

2017 ◽  
Vol 102 (4) ◽  
pp. 1387-1395 ◽  
Author(s):  
Sarah Zaheer ◽  
Ian H. de Boer ◽  
Matthew Allison ◽  
Jenifer M. Brown ◽  
Bruce M. Psaty ◽  
...  

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Guillaume Courbon ◽  
Connor Francis ◽  
Claire Gerber ◽  
Samantha Neuburg ◽  
Xueyan Wang ◽  
...  

AbstractBone-produced fibroblast growth factor 23 (FGF23) increases in response to inflammation and iron deficiency and contributes to cardiovascular mortality in chronic kidney disease (CKD). Neutrophil gelatinase-associated lipocalin (NGAL or lipocalin 2; LCN2 the murine homolog) is a pro-inflammatory and iron-shuttling molecule that is secreted in response to kidney injury and may promote CKD progression. We investigated bone FGF23 regulation by circulating LCN2. At 23 weeks, Col4a3KO mice showed impaired kidney function, increased levels of kidney and serum LCN2, increased bone and serum FGF23, anemia, and left ventricular hypertrophy (LVH). Deletion of Lcn2 in CKD mice did not improve kidney function or anemia but prevented the development of LVH and improved survival in association with marked reductions in serum FGF23. Lcn2 deletion specifically prevented FGF23 elevations in response to inflammation, but not iron deficiency or phosphate, and administration of LCN2 increased serum FGF23 in healthy and CKD mice by stimulating Fgf23 transcription via activation of cAMP-mediated signaling in bone cells. These results show that kidney-produced LCN2 is an important mediator of increased FGF23 production by bone in response to inflammation and in CKD. LCN2 inhibition might represent a potential therapeutic approach to lower FGF23 and improve outcomes in CKD.


Author(s):  
Stuart M. Sprague ◽  
Menaka Sarav

The kidneys play a critical role in maintaining normal serum calcium and phosphorus concentrations, under the regulation of three main hormones: parathyroid hormone, calcitriol, and fibroblast growth factor 23. With the progression of chronic kidney disease (CKD), most patients develop CKD–mineral and bone disorder (CKD-MBD), which is a systemic disorder involving derangement in mineral metabolism, renal osteodystrophy, and extraskeletal calcification. Disturbances in mineral metabolism develop early in CKD and include phosphate retention, hypocalcaemia, vitamin D deficiency, and hyperparathyroidism. Renal osteodystrophy involves pathologic changes of bone morphology related to progressive CKD and is quantifiable by histomorphometry, based on bone biopsy. CKD-MBD is associated with significant morbidity, including bone loss, fractures, cardiovascular disease, immune suppression, as well as increased mortality. As the disorder begins early in the course of CKD, a proactive approach with intervention is important. Therapeutic strategies could then be employed to prevent and correct these disturbances, aiming to improve cardiovascular outcomes and survival. Current practice guidelines for CKD-MBD are based on insufficient data and high-quality studies are required before specific treatment can be advocated strongly.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Kenichi Akiyama ◽  
Takaaki Kimura ◽  
Kazuhiro Shiizaki

Calciprotein particles (CPPs) are a new biological marker of chronic kidney disease-mineral and bone disorder (CKD-MBD). CPPs consist of phosphate, calcium, and some proteins, with phosphate being the major contributor to the level and biological activity of CPPs. Recent studies have shown the physiological and pathological significance of CPPs, including contributions to bone and mineral metabolism, and to tissue and organ impairments such as cardiovascular damage and inflammatory responses. These actions are well known as important aspects of CKD-MBD. Fibroblast growth factor 23 (FGF23), which is secreted from the bone as the phosphaturic hormone, is markedly elevated in CKD-MBD. Many clinical studies have shown significant relationships between the level of FGF23 and outcomes such as mortality, prevalence of cardiovascular disease, bone fracture, and levels of inflammatory markers. Basic and clinical studies have suggested that CPPs contribute to synthesis and secretion of FGF23. Surgical treatments such as renal transplantation and parathyroidectomy for patients with CKD-MBD suppress excess levels of phosphate, calcium, parathyroid hormone (PTH), and FGF23, which are related to the CPP level. Therefore, suppression of CPPs might also contribute to improved clinical outcomes after these treatments.


Sign in / Sign up

Export Citation Format

Share Document