Faculty Opinions recommendation of Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins.

Author(s):  
Nick Grishin
BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan Liu ◽  
Anupma Sharma ◽  
Marie Jamille Niewiara ◽  
Ratnesh Singh ◽  
Ray Ming ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Sophie R. Ullrich ◽  
Carolina González ◽  
Anja Poehlein ◽  
Judith S. Tischler ◽  
Rolf Daniel ◽  
...  

2009 ◽  
Vol 18 (23) ◽  
pp. 4870-4887 ◽  
Author(s):  
GEROMY G. MOORE ◽  
RAKHI SINGH ◽  
BRUCE W. HORN ◽  
IGNAZIO CARBONE

2018 ◽  
Author(s):  
Chelsea L. Murphy ◽  
Noha H. Youssef ◽  
Radwa A. Hanafy ◽  
MB Couger ◽  
Jason E. Stajich ◽  
...  

AbstractSurvival and growth of the anaerobic gut fungi (AGF, Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. Patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 283 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2.1-3.6% in AGF genomes. The majority of HGT events were AGF specific (91.5%) and wide (70.7%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This work strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high rank taxonomic eukaryotic lineage.ImportanceThe anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryotes dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. This manuscript assesses the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota post sequestration in the herbivorous gut. Analysis of twenty-seven transcriptomes that represent the broad Neocallimastigomycota diversity identified 283 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2.1-3.6% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This work represents a unique example of the role of HGT in shaping the evolution of a high rank taxonomic eukaryotic lineage.


2018 ◽  
Author(s):  
Peter Thorpe ◽  
Carmen M. Escudero-Martinez ◽  
Peter J. A. Cock ◽  
D. Laetsch ◽  
Sebastian Eves-van den Akker ◽  
...  

AbstractBackgroundAphids are a diverse group of taxa that contain hundreds of agronomically important species, which vary in their host range and pathogenicity. However, the genome evolution underlying agriculturally important aphid traits is not well understood.ResultsWe generated highly-contiguous draft genome assemblies for two aphid species: the narrow host range Myzus cerasi, and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these genome assemblies, and those of three related species (Acyrthosiphon pisum, D. noxia and M. persicae), we show that aphid genomes consistently encode similar gene numbers, and in the case of A. pisum, fewer and larger genes than previously reported. We compare gene content, gene duplication, synteny, horizontal gene transfer events, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites.Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth, and are characterized by disparate gain and loss of genes acquired by horizontal gene transfer (HGT). Such HGT events account for approximately 1% of loci, and contribute to the protein-coding content of aphid species analysed. Putative effector repertoires, originating from duplicated loci, putative HGT events and other loci, have an unusual genomic organisation and evolutionary history. We identify a highly conserved effector-pair that is tightly genetically-linked in all aphid species. In R. padi, this effector pair is tightly transcriptionally-linked, and shares a transcriptional control mechanism with a subset of approximately 50 other putative effectors distributed across the genome.ConclusionsThis study extends our current knowledge on the evolution of aphid genomes and reveals evidence for a shared control mechanism, which underlies effector expression, and ultimately plant parasitism.


DNA Repair ◽  
2019 ◽  
Vol 76 ◽  
pp. 76-88 ◽  
Author(s):  
Carlos H. Trasviña-Arenas ◽  
Sheila S. David ◽  
Luis Delaye ◽  
Elisa Azuara-Liceaga ◽  
Luis G. Brieba

1999 ◽  
Vol 9 (7) ◽  
pp. 608-628 ◽  
Author(s):  
Kira S. Makarova ◽  
L. Aravind ◽  
Michael Y. Galperin ◽  
Nick V. Grishin ◽  
Roman L. Tatusov ◽  
...  

Comparative analysis of the protein sequences encoded in the four euryarchaeal species whose genomes have been sequenced completely (Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, andPyrococcus horikoshii) revealed 1326 orthologous sets, of which 543 are represented in all four species. The proteins that belong to these conserved euryarchaeal families comprise 31%–35% of the gene complement and may be considered the evolutionarily stable core of the archaeal genomes. The core gene set includes the great majority of genes coding for proteins involved in genome replication and expression, but only a relatively small subset of metabolic functions. For many gene families that are conserved in all euryarchaea, previously undetected orthologs in bacteria and eukaryotes were identified. A number of euryarchaeal synapomorphies (unique shared characters) were identified; these are protein families that possess sequence signatures or domain architectures that are conserved in all euryarchaea but are not found in bacteria or eukaryotes. In addition, euryarchaea-specific expansions of several protein and domain families were detected. In terms of their apparent phylogenetic affinities, the archaeal protein families split into bacterial and eukaryotic families. The majority of the proteins that have only eukaryotic orthologs or show the greatest similarity to their eukaryotic counterparts belong to the core set. The families of euryarchaeal genes that are conserved in only two or three species constitute a relatively mobile component of the genomes whose evolution should have involved multiple events of lineage-specific gene loss and horizontal gene transfer. Frequently these proteins have detectable orthologs only in bacteria or show the greatest similarity to the bacterial homologs, which might suggest a significant role of horizontal gene transfer from bacteria in the evolution of the euryarchaeota.


Sign in / Sign up

Export Citation Format

Share Document