fungal lineage
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 2)

mSystems ◽  
2021 ◽  
Author(s):  
Rachel A. Koch ◽  
Joshua R. Herr

By studying fungi that parasitize other fungi, we can understand the basic biology of these unique interactions. Studies focused on the genetic mechanisms regulating mycoparasitism between host and parasite have thus far concentrated on a single fungal lineage within the Ascomycota.


2021 ◽  
Author(s):  
Davis Laundon ◽  
Nathan Chrismas ◽  
Kimberley Bird ◽  
Seth Thomas ◽  
Thomas Mock ◽  
...  

The chytrids (phylum Chytridiomycota) are a major early-diverging fungal lineage of ecological and evolutionary importance. Despite their importance, many fundamental aspects of chytrid developmental and cell biology remain poorly understood. To address these knowledge gaps, we combined quantitative volume electron microscopy and comparative transcriptome profiling to create an "atlas" of the cellular and molecular basis of the chytrid life cycle, using the model chytrid Rhizoclosmatium globosum. From our developmental atlas, we show that zoospores exhibit a specialised biological repertoire dominated by inactive ribosome aggregates, and that lipid processing is complex and dynamic throughout the cell cycle. We demonstrate that the chytrid apophysis is a distinct subcellular structure characterised by high intracellular trafficking, providing evidence for division of labour in the chytrid cell plan, and show that zoosporogenesis includes "animal like" amoeboid cell morphologies resulting from endocytotic cargo transport from the interstitial maternal cytoplasm. Taken together, our results reveal insights into chytrid developmental biology and provide a basis for future investigations into early-diverging fungal cell biology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huijun Guo ◽  
Qidi Du ◽  
Yongdun Xie ◽  
Hongchun Xiong ◽  
Linshu Zhao ◽  
...  

Blast is caused by the host-specific lineages of the fungus Magnaporthe oryzae and is the most important destructive disease in major crop plants, including rice and wheat. The first wheat blast outbreak that occurred in Bangladesh in 2016 and the recent epidemic in Zambia were caused by the M. oryzae Triticum (MoT) pathotype, a fungal lineage belonging to M. oryzae. Although a few reported wheat cultivars show modest resistance to MoT, the patterns of genetic variation and diversity of this pathotype make it crucial to identify additional lines of resistant wheat germplasm. Nearly 40 rice blast resistant and susceptible genes have so far been cloned. Here, we used BLAST analysis to locate two rice blast susceptible genes in the wheat reference genome, bsr-d1 and bsr-k1, and identified six identical homologous genes located on subgenomes A, B, and D. We uncovered a total of 171 single nucleotide polymorphisms (SNPs) in an ethyl methanesulfonate (EMS)-induced population, with mutation densities ranging from 1/1107.1 to 1/230.7 kb through Targeting Induced Local Lesions IN Genomes (TILLING) by sequencing. These included 81 SNPs located in exonic and promoter regions, and 13 coding alleles that are predicted to have severe effects on protein function, including two pre-mature mutants that might affect wheat blast resistance. The loss-of-function alleles identified in this study provide insights into new wheat blast resistant lines, which represent a valuable breeding resource.


2020 ◽  
Vol 126 (5) ◽  
pp. 915-928 ◽  
Author(s):  
Carla J Harper ◽  
Christopher Walker ◽  
Andrew B Schwendemann ◽  
Hans Kerp ◽  
Michael Krings

Abstract Background and Aims Structurally preserved arbuscular mycorrhizas from the Lower Devonian Rhynie chert represent core fossil evidence of the evolutionary history of mycorrhizal systems. Moreover, Rhynie chert fossils of glomeromycotan propagules suggest that this lineage of arbuscular fungi was morphologically diverse by the Early Devonian; however, only a small fraction of this diversity has been formally described and critically evaluated. Methods Thin sections, previously prepared by grinding wafers of chert from the Rhynie beds, were studied by transmitted light microscopy. Fossils corresponding to the description of Archaeospora spp. occurred in 29 slides, and were measured, photographed and compared with modern-day species in that genus. Key Results Sessile propagules <85 µm in diameter, some still attached to a sporiferous saccule, were found in early land plant axes and the chert matrix; they developed, in a similar manner to extant Archaeospora, laterally or centrally within the saccule neck. Microscopic examination and comparison with extant fungi showed that, morphologically, the fossils share the characters used to circumscribe the genus Archaeospora (Glomeromycota; Archaeosporales; Archaeosporaceae). Conclusions The fossils can be assigned with confidence to the extant family Archaeosporaceae, but because molecular analysis is necessary to place organisms in these taxa to present-day genera and species, they are placed in a newly proposed fossil taxon, Archaeosporites rhyniensis.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Andrew Ryan Passer ◽  
Marco A. Coelho ◽  
Robert Blake Billmyre ◽  
Minou Nowrousian ◽  
Moritz Mittelbach ◽  
...  

ABSTRACT Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii. However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus. However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages. IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Chelsea L. Murphy ◽  
Noha H. Youssef ◽  
Radwa A. Hanafy ◽  
M. B. Couger ◽  
Jason E. Stajich ◽  
...  

ABSTRACTSurvival and growth of the anaerobic gut fungi (AGF; Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. The patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 277 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. The majority of HGT events were AGF specific (91.7%) and wide (70.8%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This study strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.IMPORTANCEThe anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryote-dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. We assess here the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota postsequestration in the herbivorous gut. Analysis of 27 transcriptomes that represent the broad diversity of Neocallimastigomycota identified 277 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This study represents a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.


2018 ◽  
Author(s):  
Chelsea L. Murphy ◽  
Noha H. Youssef ◽  
Radwa A. Hanafy ◽  
MB Couger ◽  
Jason E. Stajich ◽  
...  

AbstractSurvival and growth of the anaerobic gut fungi (AGF, Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. Patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 283 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2.1-3.6% in AGF genomes. The majority of HGT events were AGF specific (91.5%) and wide (70.7%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This work strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high rank taxonomic eukaryotic lineage.ImportanceThe anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryotes dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. This manuscript assesses the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota post sequestration in the herbivorous gut. Analysis of twenty-seven transcriptomes that represent the broad Neocallimastigomycota diversity identified 283 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2.1-3.6% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This work represents a unique example of the role of HGT in shaping the evolution of a high rank taxonomic eukaryotic lineage.


Protist ◽  
2018 ◽  
Vol 169 (1) ◽  
pp. 122-140 ◽  
Author(s):  
Sergey A. Karpov ◽  
Purificación López-García ◽  
Maria A. Mamkaeva ◽  
Vladimir I. Klimov ◽  
Andrey E. Vishnyakov ◽  
...  
Keyword(s):  

2017 ◽  
Vol 7 (7) ◽  
pp. 2047-2054 ◽  
Author(s):  
Alexis Garcia ◽  
Gloria Adedoyin ◽  
Joseph Heitman ◽  
Soo Chan Lee

Abstract Mucor circinelloides is a human pathogen, biofuel producer, and model system that belongs to a basal fungal lineage; however, the genetics of this fungus are limited. In contrast to ascomycetes and basidiomycetes, basal fungal lineages have been understudied. This may be caused by a lack of attention given to these fungi, as well as limited tools for genetic analysis. Nonetheless, the importance of these fungi as pathogens and model systems has increased. M. circinelloides is one of a few genetically tractable organisms in the basal fungi, but it is far from a robust genetic system when compared to model fungi in the subkingdom Dikarya. One problem is the organism is resistant to drugs utilized to select for dominant markers in other fungal transformation systems. Thus, we developed a blaster recyclable marker system by using the pyrG gene (encoding an orotidine-5′-phosphate decarboxylase, ortholog of URA3 in Saccharomyces cerevisiae). A 237-bp fragment downstream of the pyrG gene was tandemly incorporated into the upstream region of the gene, resulting in construction of a pyrG-dpl237 marker. To test the functionality of the pyrG-dpl237 marker, we disrupted the carRP gene that is involved in carotenoid synthesis in pyrG− mutant background. The resulting carRP::pyrG-dpl237 mutants exhibit a white colony phenotype due to lack of carotene, whereas wild type displays yellowish colonies. The pyrG marker was then successfully excised, generating carRP-dpl237 on 5-FOA medium. The mutants became auxotrophic and required uridine for growth. We then disrupted the calcineurin B regulatory subunit cnbR gene in the carRP::dpl237 strain, generating mutants with the alleles carRP::dpl237 and cnbR::pyrG. These results demonstrate that the recyclable marker system is fully functional, and therefore the pyrG-dpl237 marker can be used for sequential gene deletions in M. circinelloides.


Sign in / Sign up

Export Citation Format

Share Document