Recombination and lineage-specific gene loss in the aflatoxin gene cluster ofAspergillus flavus

2009 ◽  
Vol 18 (23) ◽  
pp. 4870-4887 ◽  
Author(s):  
GEROMY G. MOORE ◽  
RAKHI SINGH ◽  
BRUCE W. HORN ◽  
IGNAZIO CARBONE
2012 ◽  
Vol 4 (11) ◽  
pp. 1162-1175 ◽  
Author(s):  
Christa E. Moore ◽  
Bruce Curtis ◽  
Tyler Mills ◽  
Goro Tanifuji ◽  
John M. Archibald

PLoS Genetics ◽  
2009 ◽  
Vol 5 (5) ◽  
pp. e1000496 ◽  
Author(s):  
Cristian Cañestro ◽  
Julian M. Catchen ◽  
Adriana Rodríguez-Marí ◽  
Hayato Yokoi ◽  
John H. Postlethwait

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 947-957 ◽  
Author(s):  
John G Jelesko ◽  
Kristy Carter ◽  
Whitney Thompson ◽  
Yuki Kinoshita ◽  
Wilhelm Gruissem

Abstract Paralogous genes organized as a gene cluster can rapidly evolve by recombination between misaligned paralogs during meiosis, leading to duplications, deletions, and novel chimeric genes. To model unequal recombination within a specific gene cluster, we utilized a synthetic RBCSB gene cluster to isolate recombinant chimeric genes resulting from meiotic recombination between paralogous genes on sister chromatids. Several F1 populations hemizygous for the synthRBCSB1 gene cluster gave rise to Luc+ F2 plants at frequencies ranging from 1 to 3 × 10-6. A nonuniform distribution of recombination resolution sites resulted in the biased formation of recombinant RBCS3B/1B::LUC genes with nonchimeric exons. The positioning of approximately half of the mapped resolution sites was effectively modeled by the fractional length of identical DNA sequences. In contrast, the other mapped resolution sites fit an alternative model in which recombination resolution was stimulated by an abrupt transition from a region of relatively high sequence similarity to a region of low sequence similarity. Thus, unequal recombination between paralogous RBCSB genes on sister chromatids created an allelic series of novel chimeric genes that effectively resulted in the diversification rather than the homogenization of the synthRBCSB1 gene cluster.


Author(s):  
Fernanda M Bosada ◽  
Mathilde R Rivaud ◽  
Jae-Sun Uhm ◽  
Sander Verheule ◽  
Karel van Duijvenboden ◽  
...  

Rationale: Atrial Fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Genome-wide association studies have identified AF-associated common variants across 100+ genomic loci, but the mechanism underlying the impact of these variant loci on AF susceptibility in vivo has remained largely undefined. One such variant region, highly associated with AF, is found at 1q24, close to PRRX1, encoding the Paired Related Homeobox 1 transcription factor. Objective: To identify the mechanistic link between the variant region at 1q24 and AF predisposition. Methods and Results: The mouse orthologue of the noncoding variant genomic region (R1A) at 1q24 was deleted using CRISPR genome editing. Among the genes sharing the topologically associated domain with the deleted R1A region (Kifap3, Prrx1, Fmo2, Prrc2c), only the broadly expressed gene Prrx1 was downregulated in mutants, and only in cardiomyocytes. Expression and epigenetic profiling revealed that a cardiomyocyte lineage-specific gene program (Mhrt, Myh6, Rbm20, Tnnt2, Ttn, Ckm) was upregulated in R1A-/- atrial cardiomyocytes, and that Mef2 binding motifs were significantly enriched at differentially accessible chromatin sites. Consistently, Prrx1 suppressed Mef2-activated enhancer activity in HL-1 cells. Mice heterozygous or homozygous for the R1A deletion were susceptible to atrial arrhythmia induction, had atrial conduction slowing and more irregular RR intervals. Isolated R1A-/- mouse left atrial cardiomyocytes showed lower action potential upstroke velocities and sodium current, as well as increased systolic and diastolic calcium concentrations compared to controls. Conclusions: The noncoding AF variant region at 1q24 modulates Prrx1 expression in cardiomyocytes. Cardiomyocyte-specific reduction of Prrx1 expression upon deletion of the noncoding region leads to a profound induction of a cardiac lineage-specific gene program and to propensity for AF. These data indicate that AF-associated variants in humans may exert AF predisposition through reduced PRRX1 expression in cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document