Faculty Opinions recommendation of Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor.

Author(s):  
Jean-Jacques Sanglier
2008 ◽  
Vol 190 (20) ◽  
pp. 6903-6908 ◽  
Author(s):  
Ya-Wen Lu ◽  
Adrianna K. San Roman ◽  
Amy M. Gehring

ABSTRACT The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.


2007 ◽  
Vol 189 (14) ◽  
pp. 5284-5292 ◽  
Author(s):  
Nancy L. McKenzie ◽  
Justin R. Nodwell

ABSTRACT The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2∼P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2∼P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2∼P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.


2002 ◽  
Vol 184 (3) ◽  
pp. 794-805 ◽  
Author(s):  
N. Jamie Ryding ◽  
Todd B. Anderson ◽  
Wendy C. Champness

ABSTRACT The Streptomyces coelicolor absA two-component system was initially identified through analysis of mutations in the sensor kinase absA1 that caused inhibition of all four antibiotics synthesized by this strain. Previous genetic analysis had suggested that the phosphorylated form of AbsA2 acted as a negative regulator of antibiotic biosynthesis in S. coelicolor (T. B. Anderson, P. Brian, and W. C. Champness, Mol. Microbiol. 39:553–566, 2001). Genomic sequence data subsequently provided by the Sanger Centre (Cambridge, United Kingdom) revealed that absA was located within the gene cluster for production of one of the four antibiotics, calcium-dependent antibiotic (CDA). In this paper we have identified numerous transcriptional start sites within the CDA cluster and have shown that the original antibiotic-negative mutants used to identify absA exhibit a stronger negative regulation of promoters upstream of the proposed CDA biosynthetic genes than of promoters in the clusters responsible for production of actinorhodin and undecylprodigiosin. The same antibiotic-negative mutants also showed an increase in transcription from a promoter divergent to that of absA, upstream of a putative ABC transporter, in addition to an increase in transcription of absA itself. Interestingly, the negative regulation of the biosynthetic transcripts did not appear to be mediated by transcriptional regulation of cdaR (a gene encoding a homolog of the pathway-specific regulators of the act and red clusters) or by any other recognizable transcriptional regulator associated with the cluster. The role of absA in regulating the expression of the diverse antibiotic biosynthesis clusters in the genome is discussed in light of its location in the cda cluster.


2002 ◽  
Vol 9 (11) ◽  
pp. 1175-1187 ◽  
Author(s):  
Zohreh Hojati ◽  
Claire Milne ◽  
Barbara Harvey ◽  
Lyndsey Gordon ◽  
Matthew Borg ◽  
...  

Microbiology ◽  
1998 ◽  
Vol 144 (1) ◽  
pp. 193-199 ◽  
Author(s):  
P. P. Chong ◽  
S. M. Podmore ◽  
H. M. Kieser ◽  
M. Redenbach ◽  
K. Turgay ◽  
...  

2009 ◽  
Vol 81 (6) ◽  
pp. 1065-1074 ◽  
Author(s):  
Jason Micklefield

Biosynthetic engineering involves the reprogramming of genes that are involved in the biosynthesis of natural products to generate new "non-natural" products, which might otherwise not exist in nature. Potentially this approach can be used to provide large numbers of secondary metabolites variants, with altered biological activities, many of which are too complex for effective total synthesis. Recently we have been investigating the biosynthesis of the calcium-dependent antibiotics (CDAs) which are members of the therapeutically relevant class of acidic lipopeptide antibiotics. CDAs are assembled by nonribosomal peptide synthetase (NRPS) enzymes. These large modular assembly-line enzymes process intermediates that are covalently tethered to peptidyl carrier protein (PCP) domain bonds bonds, which makes them particularly amenable to reprogramming. The CDA producer, Streptomyces coelicolor, is also a genetically tractable model organism which makes CDA an ideal template for biosynthetic engineering. To this end we have elucidated many of the key steps in CDA biosynthesis and utilized this information to develop methods that have enabled the engineered biosynthesis of wide range of CDA-type lipopeptides.


2004 ◽  
Vol 6 (4) ◽  
pp. 313-325 ◽  
Author(s):  
Hong Bum Kim ◽  
Colin P. Smith ◽  
Jason Micklefield ◽  
Ferda Mavituna

2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


Sign in / Sign up

Export Citation Format

Share Document