Faculty Opinions recommendation of Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle.

Author(s):  
Guy Richardson
2013 ◽  
Vol 242 (12) ◽  
pp. 1454-1465 ◽  
Author(s):  
Dong-Dong Ren ◽  
Michael Kelly ◽  
Sun Myoung Kim ◽  
Cynthia Mary Grimsley-Myers ◽  
Fang-Lu Chi ◽  
...  

Development ◽  
2012 ◽  
Vol 139 (20) ◽  
pp. 3775-3785 ◽  
Author(s):  
A. P. Giese ◽  
J. Ezan ◽  
L. Wang ◽  
L. Lasvaux ◽  
F. Lembo ◽  
...  
Keyword(s):  

1997 ◽  
Vol 104 (1-2) ◽  
pp. 15-26 ◽  
Author(s):  
R.Keith Duncan ◽  
J.Wallace Grant

1991 ◽  
Vol 57 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Martin Ptok ◽  
Thankam S. Nair ◽  
Richard A. Altschuler ◽  
Jochen Schacht ◽  
Thomas E. Carey

2019 ◽  
Author(s):  
Francesco Gianoli ◽  
Thomas Risler ◽  
Andrei S. Kozlov

ABSTRACTHearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechano-electrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities, then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.SIGNIFICANCEHair cells are the sensory receptors of the inner ear that convert mechanical stimuli into electrical signals transmitted to the brain. Sensitivity to mechanical stimuli and the kinetics of mechanotransduction currents change during hair-cell development. The same trend, albeit on a shorter timescale, is also observed during hair-cell recovery from acoustic trauma. Furthermore, the current kinetics in a given hair cell depends on the stimulus magnitude, and the degree of that dependence varies with development. These phenomena have so far remained unexplained. Here, we show that they can all be reproduced using a single unifying mechanism: the progressive formation of channel pairs, in which individual channels interact through the lipid bilayer and gate cooperatively.


2020 ◽  
Author(s):  
Y. Roongthumskul ◽  
J. Faber ◽  
D. Bozovic

ABSTRACTThe high sensitivity and effective frequency discrimination of sound detection performed by the auditory system rely on the dynamics of a system of hair cells. In the inner ear, these acoustic receptors are primarily attached to an overlying structure which provides mechanical coupling between the hair bundles. While the dynamics of individual hair bundles have been extensively investigated, the influence of mechanical coupling on the motility of the system of bundles remains underdetermined. We developed a technique of mechanically coupling two active hair bundles, enabling us to probe the dynamics of the coupled system experimentally. We demonstrated that the coupling could enhance the coherence of hair bundles’ spontaneous oscillation as well as their phase-locked response to sinusoidal stimuli, at the calcium concentration in the surrounding fluid near the physiological level. The empirical data were consistent with numerical results from a model of two coupled nonisochronous oscillators, each displaying a supercritical Hopf bifurcation. The model revealed that weak coupling can poise the system of unstable oscillators closer to the bifurcation by a shift in the critical point. In addition, the dynamics of strongly coupled oscillators far from criticality suggested that individual hair bundles may be regarded as nonisochronous oscillators. An optimal degree of nonisochronicity was required for the observed tuning behavior in the coherence of autonomous motion of the coupled system.STATEMENT OF SIGNIFICANCEHair cells of the inner ear transduce acoustic energy into electrical signals via a deflection of hair bundles. Unlike a passive mechanical antenna, a free-standing hair bundle behaves as an active oscillator that can sustain autonomous oscillations, as well as amplify a low-level stimulus. Hair bundles under physiological conditions are elastically coupled to each other via an extracellular matrix. Therefore, the dynamics of coupled nonlinear oscillators underlie the performance of the peripheral auditory system. Despite extensive theoretical investigations, there are limited experimental evidence that support the significance of coupling on hair bundle motility. We develop a technique to mechanically couple hair bundles and demonstrate the benefits of coupling on hair bundle spontaneous motility.


2019 ◽  
Vol 116 (11) ◽  
pp. 4999-5008 ◽  
Author(s):  
Andre Landin Malt ◽  
Zachary Dailey ◽  
Julia Holbrook-Rasmussen ◽  
Yuqiong Zheng ◽  
Arielle Hogan ◽  
...  

In the inner ear sensory epithelia, stereociliary hair bundles atop sensory hair cells are mechanosensory apparatus with planar polarized structure and orientation. This is established during development by the concerted action of tissue-level, intercellular planar cell polarity (PCP) signaling and a hair cell-intrinsic, microtubule-mediated machinery. However, how various polarity signals are integrated during hair bundle morphogenesis is poorly understood. Here, we show that the conserved cell polarity protein Par3 is essential for planar polarization of hair cells. Par3 deletion in the inner ear disrupted cochlear outgrowth, hair bundle orientation, kinocilium positioning, and basal body planar polarity, accompanied by defects in the organization and cortical attachment of hair cell microtubules. Genetic mosaic analysis revealed that Par3 functions both cell-autonomously and cell-nonautonomously to regulate kinocilium positioning and hair bundle orientation. At the tissue level, intercellular PCP signaling regulates the asymmetric localization of Par3, which in turn maintains the asymmetric localization of the core PCP protein Vangl2. Mechanistically, Par3 interacts with and regulates the localization of Tiam1 and Trio, which are guanine nucleotide exchange factors (GEFs) for Rac, thereby stimulating Rac-Pak signaling. Finally, constitutively active Rac1 rescued the PCP defects in Par3-deficient cochleae. Thus, a Par3–GEF–Rac axis mediates both tissue-level and hair cell-intrinsic PCP signaling.


2010 ◽  
Vol 518 (23) ◽  
pp. 4702-4722 ◽  
Author(s):  
Chisato Fujimoto ◽  
Hidenori Ozeki ◽  
Yasunobu Uchijima ◽  
Keigo Suzukawa ◽  
Akihisa Mitani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document