Faculty Opinions recommendation of Top-down dendritic input increases the gain of layer 5 pyramidal neurons.

Author(s):  
Kathleen Rockland
Keyword(s):  
2021 ◽  
Vol 15 ◽  
Author(s):  
Fabian Schubert ◽  
Claudius Gros

Cortical pyramidal neurons have a complex dendritic anatomy, whose function is an active research field. In particular, the segregation between its soma and the apical dendritic tree is believed to play an active role in processing feed-forward sensory information and top-down or feedback signals. In this work, we use a simple two-compartment model accounting for the nonlinear interactions between basal and apical input streams and show that standard unsupervised Hebbian learning rules in the basal compartment allow the neuron to align the feed-forward basal input with the top-down target signal received by the apical compartment. We show that this learning process, termed coincidence detection, is robust against strong distractions in the basal input space and demonstrate its effectiveness in a linear classification task.


2021 ◽  
Author(s):  
Colleen J. Gillon ◽  
Jason E. Pina ◽  
Jérôme A. Lecoq ◽  
Ruweida Ahmed ◽  
Yazan Billeh ◽  
...  

AbstractScientists have long conjectured that the neocortex learns the structure of the environment in a predictive, hierarchical manner. To do so, expected, predictable features are differentiated from unexpected ones by comparing bottom-up and top-down streams of data. It is theorized that the neocortex then changes the representation of incoming stimuli, guided by differences in the responses to expected and unexpected events. Such differences in cortical responses have been observed; however, it remains unknown whether these unexpected event signals govern subsequent changes in the brain’s stimulus representations, and, thus, govern learning. Here, we show that unexpected event signals predict subsequent changes in responses to expected and unexpected stimuli in individual neurons and distal apical dendrites that are tracked over a period of days. These findings were obtained by observing layer 2/3 and layer 5 pyramidal neurons in primary visual cortex of awake, behaving mice using two-photon calcium imaging. We found that many neurons in both layers 2/3 and 5 showed large differences between their responses to expected and unexpected events. These unexpected event signals also determined how the responses evolved over subsequent days, in a manner that was different between the somata and distal apical dendrites. This difference between the somata and distal apical dendrites may be important for hierarchical computation, given that these two compartments tend to receive bottom-up and top-down information, respectively. Together, our results provide novel evidence that the neocortex indeed instantiates a predictive hierarchical model in which unexpected events drive learning.


2015 ◽  
Vol 122 (6) ◽  
pp. 1415-1431 ◽  
Author(s):  
Kaspar Meyer

Abstract Despite considerable progress in the identification of the molecular targets of general anesthetics, it remains unclear how these drugs affect the brain at the systems level to suppress consciousness. According to recent proposals, anesthetics may achieve this feat by interfering with corticocortical top–down processes, that is, by interrupting information flow from association to early sensory cortices. Such a view entails two immediate questions. First, at which anatomical site, and by virtue of which physiological mechanism, do anesthetics interfere with top–down signals? Second, why does a breakdown of top–down signaling cause unconsciousness? While an answer to the first question can be gleaned from emerging neurophysiological evidence on dendritic signaling in cortical pyramidal neurons, a response to the second is offered by increasingly popular theoretical frameworks that place the element of prediction at the heart of conscious perception.


Author(s):  
JS Deitch ◽  
KL Smith ◽  
JW Swann ◽  
JN Turner

Neurons labeled with horseradish peroxidase and reacted with diaminobenzidine (DAB) can be imaged using a confocal scanning laser microscope (CSLM) in the reflection mode. In contrast to fluorescent markers, the DAB reaction product is thought to be stable and can be observed by both light and electron microscopy. We have investigated the sensitivity of the DAB reaction product to laser irradiation, and present the spectrophotometric properties of DAB before and after exposure in the CSLM.Pyramidal neurons in slices of rat hippocampus were injected with biocytin (a biotin-lysine complex), fixed overnight in 4% paraformaldehyde, and vibratome sectioned at 75 μm. Biocytin was detected with avidin-HRP (1:200) in 0.5% Triton X-100, incubated in DAB (0.5 mg/ml) with or without 0.04% nickel ammonium sulfate (Ni), dehydrated, and imaged in a Bio Rad MRC-500 CSLM with an argon ion laser (488 and 514 nm). Spectrophotometric measurements of the soma were made on a Zeiss microspectrophotometer, as a function of laser exposure (100-1000 scans) and staining protocol.


2004 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Fred W. Mast ◽  
Charles M. Oman

The role of top-down processing on the horizontal-vertical line length illusion was examined by means of an ambiguous room with dual visual verticals. In one of the test conditions, the subjects were cued to one of the two verticals and were instructed to cognitively reassign the apparent vertical to the cued orientation. When they have mentally adjusted their perception, two lines in a plus sign configuration appeared and the subjects had to evaluate which line was longer. The results showed that the line length appeared longer when it was aligned with the direction of the vertical currently perceived by the subject. This study provides a demonstration that top-down processing influences lower level visual processing mechanisms. In another test condition, the subjects had all perceptual cues available and the influence was even stronger.


2003 ◽  
Vol 14 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Walter Sturm

Abstract: Behavioral and PET/fMRI-data are presented to delineate the functional networks subserving alertness, sustained attention, and vigilance as different aspects of attention intensity. The data suggest that a mostly right-hemisphere frontal, parietal, thalamic, and brainstem network plays an important role in the regulation of attention intensity, irrespective of stimulus modality. Under conditions of phasic alertness there is less right frontal activation reflecting a diminished need for top-down regulation with phasic extrinsic stimulation. Furthermore, a high overlap between the functional networks for alerting and spatial orienting of attention is demonstrated. These findings support the hypothesis of a co-activation of the posterior attention system involved in spatial orienting by the anterior alerting network. Possible implications of these findings for the therapy of neglect are proposed.


2011 ◽  
Vol 22 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Julia Graf ◽  
Hartwig Kulke ◽  
Christa Sous-Kulke ◽  
Wilfried Schupp ◽  
Stefan Lautenbacher
Keyword(s):  

Aufmerksamkeit kann als Kontrollsystem neuronaler Aktivität verstanden werden, welches Neuroplastizität top-down modulieren hilft. Bisher wurde selten versucht, durch deren gezielte Förderung Funktionswiederherstellungen nach Hirnschädigung zu begünstigen. In vorliegender Studie wurde dies am Beispiel der Aphasie erprobt. 15 Schlaganfallpatienten erhielten ein dreiwöchiges Training der selektiven Aufmerksamkeit mit den PC-Programmen CogniPlus und „Konzentration“ bei fünf Sitzungen pro Woche zusätzlich zur Standardtherapie, 13 weitere bildeten eine Kontrollgruppe ohne Aufmerksamkeitstraining. Zur Effektivitätskontrolle dienten zwei Versionen des Untertests Go/Nogo (Testbatterie zur Aufmerksamkeitsprüfung) und die Kurze Aphasieprüfung. Nach dem Training manifestierte sich zwischen den Untersuchungsgruppen kein Unterschied in Aufmerksamkeits- und Sprachfunktionen; das zusätzliche Aufmerksamkeitstraining war also wirkungslos. Allerdings zeigten Patienten mit deutlichen Aufmerksamkeitsverbesserungen tendenziell weniger Aphasie-Symptome, was die Hypothese aufmerksamkeitsvermittelter Plastizitätsmodulation nach Hirnschädigung partiell stützt.


2001 ◽  
Vol 209 (1) ◽  
pp. 34-53 ◽  
Author(s):  
Rainer Bösel
Keyword(s):  
Top Down ◽  

Zusammenfassung. Aufmerksamkeit wird sowohl als Selektivität in der bewußter Verarbeitung oder auch als selektive neuronale Aktivierung verstanden. Die neuronalen Strukturen, die Objektdiskrimination ermöglichen, erlauben eine Interaktion von datengetriebenen und endogenen top-down Prozessen, die zu einer selektiven Bereitstellung von Verarbeitungs-Ressourcen führen. Zielgerichtetes Verhalten erfordert manchmal einen Wechsel in der Ressourcen-Bereitstellung und eine Konzentration von mentaler Aktivität. Aufmerksamkeitswechsel kann als ein zweiphasiger Prozeß verstanden werden, der aus einer breiten Mobilisierung von Gedächtnis-Ressourcen besteht (angezeigt durch EEG-Theta), gefolgt von einer re-organisierenden Einengung neuronaler Aktivität (angezeigt durch langsames EEG-Alpha). Dieser Beitrag unterstützt die Annahme, daß die Analyse des gekoppelten Wechselspiels aus Mobilisierung und Konzentration in bestimmten Teilen der posterioren und anterioren Rindenregionen ein Schlüssel für das Verständnis von Aufmerksamkeitswechsel sein könnte.


Sign in / Sign up

Export Citation Format

Share Document