Faculty Opinions recommendation of The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells.

Author(s):  
Thomas Kodadek
Cell ◽  
2006 ◽  
Vol 127 (7) ◽  
pp. 1375-1388 ◽  
Author(s):  
Henrietta Szutorisz ◽  
Andrew Georgiou ◽  
László Tora ◽  
Niall Dillon

Author(s):  
Beatrice Borsari ◽  
Pablo Villegas-Mirón ◽  
Hafid Laayouni ◽  
Alba Segarra-Casas ◽  
Jaume Bertranpetit ◽  
...  

AbstractTissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We found that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, while housekeeping genes are more often controlled by intergenic enhancers. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, while the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.


2019 ◽  
Vol 11 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Rui Fu ◽  
Dawei Yu ◽  
Jilong Ren ◽  
Chongyang Li ◽  
Jing Wang ◽  
...  

AbstractBlastocyst complementation by pluripotent stem cell (PSC) injection is believed to be the most promising method to generate xenogeneic organs. However, ethical issues prevent the study of human chimeras in the late embryonic stage of development. Primate embryonic stem cells (ESCs), which have similar pluripotency to human ESCs, are a good model for studying interspecies chimerism and organ generation. However, whether primate ESCs can be used in xenogenous grafts remains unclear. In this study, we evaluated the chimeric ability of cynomolgus monkey (Macaca fascicularis) ESCs (cmESCs) in pigs, which are excellent hosts because of their many similarities to humans. We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos, in which domesticated cmESCs (D-ESCs) injected into pig blastocysts differentiated into cells of all three germ layers. In addition, we obtained two neonatal interspecies chimeras, in which we observed tissue-specific D-ESC differentiation. Taken together, the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model, with a chimeric ratio of 0.001–0.0001 in different neonate tissues. We believe this work will facilitate future developments in xenogeneic organogenesis, bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.


Sign in / Sign up

Export Citation Format

Share Document