Faculty Opinions recommendation of The activating NKG2D ligand MHC class I-related chain A transfers from target cells to NK cells in a manner that allows functional consequences.

Author(s):  
Lutz Walter
2007 ◽  
Vol 178 (6) ◽  
pp. 3418-3426 ◽  
Author(s):  
Fiona E. McCann ◽  
Philipp Eissmann ◽  
Björn Önfelt ◽  
Rufina Leung ◽  
Daniel M. Davis

1997 ◽  
Vol 185 (12) ◽  
pp. 2053-2060 ◽  
Author(s):  
Ennio Carbone ◽  
Giuseppina Ruggiero ◽  
Giuseppe Terrazzano ◽  
Carmen Palomba ◽  
Ciro Manzo ◽  
...  

NK recognition is regulated by a delicate balance between positive signals initiating their effector functions, and inhibitory signals preventing them from proceeding to cytolysis. Knowledge of the molecules responsible for positive signaling in NK cells is currently limited. We demonstrate that IL-2–activated human NK cells can express CD40 ligand (CD40L) and that recognition of CD40 on target cells can provide an activation pathway for such human NK cells. CD40-transfected P815 cells were killed by NK cell lines expressing CD40L, clones and PBLderived NK cells cultured for 18 h in the presence of IL-2, but not by CD40L-negative fresh NK cells. Cross-linking of CD40L on IL-2–activated NK cells induced redirected cytolysis of CD40-negative but Fc receptor-expressing P815 cells. The sensitivity of human TAP-deficient T2 cells could be blocked by anti-CD40 antibodies as well as by reconstitution of TAP/MHC class I expression, indicating that the CD40-dependent pathway for NK activation can be downregulated, at least in part, by MHC class I molecules on the target cells. NK cell recognition of CD40 may be important in immunoregulation as well as in immune responses against B cell malignancies.


2010 ◽  
Vol 207 (10) ◽  
pp. 2073-2079 ◽  
Author(s):  
Julie M. Elliott ◽  
Joseph A. Wahle ◽  
Wayne M. Yokoyama

In MHC class I–deficient hosts, natural killer (NK) cells are hyporesponsive to cross-linking of activation receptors. Functional competence requires engagement of a self–major histocompatability complex (MHC) class I–specific inhibitory receptor, a process referred to as “licensing.” We previously suggested that licensing is developmentally determined in the bone marrow. In this study, we find that unlicensed mature MHC class I–deficient splenic NK cells show gain-of-function and acquire a licensed phenotype after adoptive transfer into wild-type (WT) hosts. Transferred NK cells produce WT levels of interferon-γ after engagement of multiple activation receptors, and degranulate at levels equivalent to WT NK cells upon coincubation with target cells. Only NK cells expressing an inhibitory Ly49 receptor specific for a cognate host MHC class I molecule show this gain-of-function. Therefore, these findings, which may be relevant to clinical bone marrow transplantation, suggest that neither exposure to MHC class I ligands during NK development in the BM nor endogenous MHC class I expression by NK cells themselves is absolutely required for licensing.


1993 ◽  
Vol 178 (4) ◽  
pp. 1321-1336 ◽  
Author(s):  
V Litwin ◽  
J Gumperz ◽  
P Parham ◽  
J H Phillips ◽  
L L Lanier

Prior studies using polyclonal populations of natural killer (NK) cells have revealed that expression of certain major histocompatibility complex (MHC) class I molecules on the membrane of normal and transformed hematopoietic target cells can prevent NK cell-mediated cytotoxicity. However, the extent of clonal heterogeneity within the NK cell population and the effect of self versus non-self MHC alleles has not been clearly established. In the present study, we have generated more than 200 independently derived human NK cell clones from four individuals of known human histocompatibility leukocyte antigens (HLA) type. NK clones were analyzed for cytolytic activity against MHC class I-deficient Epstein Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCL) stably transfected with several HLA-A, -B, or -C genes representing either self or non-self alleles. All NK clones killed the prototypic HLA-negative erythroleukemia K562 and most lysed the MHC class I-deficient C1R and 721.221 B-LCL. Analysis of the panel of HLA-A, -B, and -C transfectants supported the following general conclusions. (a) Whereas recent studies have suggested that HLA-C antigens may be preferentially recognized by NK cells, our findings indicate that 70% or more of all NK clones are able to recognize certain HLA-B alleles and many also recognize HLA-A alleles. Moreover, a single NK clone has the potential to recognize multiple alleles of HLA-A, HLA-B, and HLA-C antigens. Thus, HLA-C is not unique in conferring protection against NK lysis. (b) No simple patterns of HLA specificity emerged. Examination of a large number of NK clones from a single donor revealed overlapping, yet distinct, patterns of reactivity when a sufficiently broad panel of HLA transfectants was examined. (c) Both autologous and allogeneic HLA antigens were recognized by NK clones. There was neither evidence for deletion of NK clones reactive with self alleles nor any indication for an increased frequency of NK clones recognizing self alleles. (d) With only a few exceptions, protection conferred by transfection of HLA alleles into B-LCL was usually not absolute. Rather a continuum from essentially no protection for certain alleles (HLA-A*0201) to very striking protection for other alleles (HLA-B*5801), with a wide range of intermediate effects, was observed. (e) Whereas most NK clones retained a relatively stable HLA specificity, some NK clones demonstrated variable and heterogeneous activity over time. (f) NK cell recognition and specificity cannot be explained entirely by the presence or absence of HLA class I antigens on the target cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 994-1002 ◽  
Author(s):  
Anouk Caraux ◽  
Nayoung Kim ◽  
Sarah E. Bell ◽  
Simona Zompi ◽  
Thomas Ranson ◽  
...  

AbstractPhospholipase C-γ2 (PLC-γ2) is a key component of signal transduction in leukocytes. In natural killer (NK) cells, PLC-γ2 is pivotal for cellular cytotoxicity; however, it is not known which steps of the cytolytic machinery it regulates. We found that PLC-γ2-deficient NK cells formed conjugates with target cells and polarized the microtubule-organizing center, but failed to secrete cytotoxic granules, due to defective calcium mobilization. Consequently, cytotoxicity was completely abrogated in PLC-γ2-deficient cells, regardless of whether targets expressed NKG2D ligands, missed self major histocompatibility complex (MHC) class I, or whether NK cells were stimulated with IL-2 and antibodies specific for NKR-P1C, CD16, CD244, Ly49D, and Ly49H. Defective secretion was specific to cytotoxic granules because release of IFN-γ on stimulation with IL-12 was normal. Plcg2-/- mice could not reject MHC class I-deficient lymphoma cells nor could they control CMV infection, but they effectively contained Listeria monocytogenes infection. Our results suggest that exocytosis of cytotoxic granules, but not cellular polarization toward targets, depends on intracellular calcium rise during NK cell cytotoxicity. In vivo, PLC-γ2 regulates selective facets of innate immunity because it is essential for NK cell responses to malignant and virally infected cells but not to bacterial infections.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 583-583 ◽  
Author(s):  
Theresa Placke ◽  
Hans-Georg Kopp ◽  
Martin Schaller ◽  
Gundram Jung ◽  
Lothar Kanz ◽  
...  

Abstract Abstract 583 NK cells are a central component of the cytotoxic lymphocyte compartment capable of lysing tumor cells without prior immune sensitization of the host. The mechanisms leading to activation of NK reactivity are described by the principles of ‘missing-self' and ‘induced-self', which imply that cells with a low or absent expression of MHC class I (‘missing-self') and/or a stress-induced expression of ligands of activating NK receptors like e.g. NKG2D (‘induced-self') are preferentially recognized and eliminated by NK cells. Thus, a balance of various activating and inhibitory signals determines whether NK cell responses are initiated or not. Tumor cells often downregulate expression of MHC class I to evade T cell-mediated immune surveillance, which results in enhanced NK susceptibility. Besides the direct interaction with their target cells, NK activity is further influenced by the reciprocal interplay with various other hematopoietic cells. We and others demonstrated previously that thrombocytopenia inhibits metastasis in murine models, which is reversed by additional depletion of NK cells (e.g., Jin et al., Nature Med. 2006, Palumbo et al., Blood 2005). However, the mechanisms by which platelets impair NK-tumor interaction are largely unclear, especially in humans. Recently we reported that platelets release TGF-β upon interaction with tumor cells causing downregulation of NKG2D on NK cells, which impairs anti-tumor immunity by disturbing the principle of “induced self” (Kopp et al., Cancer Res. 2009). Here we demonstrate that platelets further enable tumor cells to evade NK cell immune surveillance by preventing detection of “missing self”: We found that tumor cells rapidly get coated in the presence of platelets, the latter expressing large amounts of MHC class I on their surface. In case of MHC class I-negative or -low cancer cells, this process results in MHC class I “pseudoexpression” on the tumor cell surface as revealed by flow cytometry, immunofluorescent staining, and electron microscopy. Platelet-derived MHC class I was found to inhibit the reactivity of autologous NK, both upon activation with cytokines and, most importantly, in cultures with platelet-coated tumor cells. Using constitutively MHC class I-negative/low tumor cells we found that blocking MHC class I restored NK cytotoxicity and IFN-γ production against platelet-coated tumor cells, but did not alter NK reactivity against the tumor cells in the absence of coating platelets. Taken together, our data indicate that platelets enable a molecular mimicry of tumor cells, allowing the latter to downregulate MHC class I in order to escape T cell immunity without inducing sufficient NK tumor immune surveillance due to conferred platelet-mediated “pseudo self”. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


1993 ◽  
Vol 178 (2) ◽  
pp. 597-604 ◽  
Author(s):  
A Moretta ◽  
M Vitale ◽  
C Bottino ◽  
A M Orengo ◽  
L Morelli ◽  
...  

Human CD3-16+56+ natural killer (NK) cells have been shown to display a clonally distributed ability to recognize major histocompatibility complex (MHC) class I alleles. Opposite to T lymphocytes, in NK cells, specific recognition of MHC class I molecules appears to induce inhibition of cytolytic activity and, thus, to protect target cells. Since a precise correlation has been established between the expression of the NK-specific GL183 and EB6 surface molecules (belonging to the novel p58 molecular family) and the specificity of NK clones, we analyzed whether p58 molecules could function as receptors for MHC in human NK cells. NK clones displaying the previously defined "specificity 2" and characterized by the GL183+EB6+ phenotype, specifically recognize the Cw3 allele and thus fail to lyse the Fc gamma R+ P815 target cells transfected with Cw3. On the other hand, NK clones displaying "specificity 1" and expressing the GL183-EB6+ phenotype failed to lyse Cw4+ target cells. Addition of the F(ab')2 fragments of either GL183 or EB6 mAb as well as the XA141 mAb of IgM isotype (specific for the EB6 molecules) completely restored the lysis of Cw3-transfected P815 cells by the Cw3-specific NK clones EX2 and EX4. Similarly, both the entire EB6 mAb, its F(ab')2 fragment and the XA141 mAb reconstituted the lysis of C1R, a Fc gamma R- target cell expressing Cw4 as the only serologically detected class I antigen. Thus, it appears that masking of different members of p58 molecules prevents recognition of "protective" MHC class I alleles and thus the delivering of inhibitory signals. Further support to the concept that p58 molecules represent a NK receptor delivering a negative signal was provided by experiments in which the entire anti-p58 mAbs (of IgG isotype) could inhibit the lysis of unprotected Fc gamma R+ P815 target cells, thus mimicking the inhibitory effect of MHC class I molecules.


2000 ◽  
Vol 191 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Rickard Glas ◽  
Lars Franksson ◽  
Clas Une ◽  
Maija-Leena Eloranta ◽  
Claes Öhlén ◽  
...  

Natural killer (NK) cells can spontaneously lyse certain virally infected and transformed cells. However, early in immune responses NK cells are further activated and recruited to tissue sites where they perform effector functions. This process is dependent on cytokines, but it is unclear if it is regulated by NK cell recognition of susceptible target cells. We show here that infiltration of activated NK cells into the peritoneal cavity in response to tumor cells is controlled by the tumor major histocompatibility complex (MHC) class I phenotype. Tumor cells lacking appropriate MHC class I expression induced NK cell infiltration, cytotoxic activation, and induction of transcription of interferon γ in NK cells. The induction of these responses was inhibited by restoration of tumor cell MHC class I expression. The NK cells responding to MHC class I–deficient tumor cells were ∼10 times as active as endogenous NK cells on a per cell basis. Although these effector cells showed a typical NK specificity in that they preferentially killed MHC class I–deficient cells, this specificity was even more distinct during induction of the intraperitoneal response. Observations are discussed in relation to a possible adaptive component of the NK response, i.e., recruitment/activation in response to challenges that only NK cells are able to neutralize.


Sign in / Sign up

Export Citation Format

Share Document