Faculty Opinions recommendation of Crystal structure of the NS3 protease-helicase from dengue virus.

Author(s):  
Patricia C Weber
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Venkatesan Jayaprakash ◽  
Ajay Kumar Timiri ◽  
Viswanathan Vijayan ◽  
Barij Nayan Sinha ◽  
Velmurugan Devadasan

Schiff’s base of isonicotinyl hydrazide with 2’,4’-dihydroxy acetophenone (INH-RA) has been designed and synthesized as a part of library enumeration targeting the NS2B-NS3 protease of Dengue virus. Slow evaporation from methanol results in the formation of monoclinic crystals C2/c space group with eight molecules in the unit cell (a=20.0165(3) Å, b=7.7594(10) Å, c=19.4809(3) Å, α=90 °, β=111.368(1) °, γ=90 ° and Z=8).Three dimensional X-ray crystallographic structure of the compound has been determined and refined using SHELXS-97 and SHELXL-2014, respectively to a final R-value of 4.64%


2008 ◽  
Vol 64 (a1) ◽  
pp. C135-C135 ◽  
Author(s):  
D. Luo ◽  
T. Xu ◽  
C. Hunke ◽  
G. Gruber ◽  
S.G. Vasudevan ◽  
...  

Author(s):  
Vijay Kumar Vishvakarma ◽  
Ramesh Chandra ◽  
Prashant Singh

: Fever is a response of human body due to an increase the temperature against the certain stimuli. It may be associated with several reasons and one of the major causes of fever is mosquito bite. Fever due to dengue virus (DENV) infection is being paid most attention out of several other fevers because of a large number of deaths reported worldwide. Dengue virus is transmitted by biting of the mosquitoes, Aedes aegypti and Aedes albopictus. DENV1, DENV2, DENV3 and DENV4 are the four serotypes of dengue virus and these serotypes have 65% similarities in their genomic structure. Genome of DENV is composed of single stranded RNA and it encodes for the polyprotein. Structural and non-structural proteins (nsP) are the two major part of protese. Researchers have paid high attention on the non-structural protease (nsP) of DENV like nsP1, nsP2A, nsP2B, nsP3, nsP4A, nsP4B and nsP5. The NS2B-NS3 protease of DENV is the prime target of the researchers as it is responsible for the catalytic activity. In the present time, Dengvaxia (vaccine) is being recommended to the patients suffering severely due to DENV infection in few countries only. Till date, neither a vaccine nor an effective medicine is available to combat with all four serotypes. This review describes the fever, its causes and studies to cure the infection due to DENV using theoretical and experimental approaches.


2015 ◽  
Vol 89 (14) ◽  
pp. 7170-7186 ◽  
Author(s):  
Laurent Chatel-Chaix ◽  
Wolfgang Fischl ◽  
Pietro Scaturro ◽  
Mirko Cortese ◽  
Stephanie Kallis ◽  
...  

ABSTRACTDengue virus (DENV) infection causes the most prevalent arthropod-borne viral disease worldwide. Approved vaccines are not available, and targets suitable for the development of antiviral drugs are lacking. One possible drug target is nonstructural protein 4B (NS4B), because it is absolutely required for virus replication; however, its exact role in the DENV replication cycle is largely unknown. With the aim of mapping NS4B determinants critical for DENV replication, we performed a reverse genetic screening of 33 NS4B mutants in the context of an infectious DENV genome. While the majority of these mutations were lethal, for several of them, we were able to select for second-site pseudoreversions, most often residing in NS4B and restoring replication competence. To identify all viral NS4B interaction partners, we engineered a fully viable DENV genome encoding an affinity-tagged NS4B. Mass spectrometry-based analysis of the NS4B complex isolated from infected cells identified the NS3 protease/helicase as a major interaction partner of NS4B. By combining the genetic complementation map of NS4B with a replication-independent expression system, we identified the NS4B cytosolic loop—more precisely, amino acid residue Q134—as a critical determinant for NS4B-NS3 interaction. An alanine substitution at this site completely abrogated the interaction and DENV RNA replication, and both were restored by pseudoreversions A69S and A137V. This strict correlation between the degree of NS4B-NS3 interaction and DENV replication provides strong evidence that this viral protein complex plays a pivotal role during the DENV replication cycle, hence representing a promising target for novel antiviral strategies.IMPORTANCEWith no approved therapy or vaccine against dengue virus infection, the viral nonstructural protein 4B (NS4B) represents a possible drug target, because it is indispensable for virus replication. However, little is known about its precise structure and function. Here, we established the first comprehensive genetic interaction map of NS4B, identifying amino acid residues that are essential for virus replication, as well as second-site mutations compensating for their defects. Additionally, we determined the NS4B viral interactome in infected cells and identified the NS3 protease/helicase as a major interaction partner of NS4B. We mapped residues in the cytosolic loop of NS4B as critical determinants for interaction with NS3, as well as RNA replication. The strong correlation between NS3-NS4B interaction and RNA replication provides strong evidence that this complex plays a pivotal role in the viral replication cycle, hence representing a promising antiviral drug target.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72402 ◽  
Author(s):  
Hugo de Almeida ◽  
Izabela M. D. Bastos ◽  
Bergmann M. Ribeiro ◽  
Bernard Maigret ◽  
Jaime M. Santana

2013 ◽  
Vol 58 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Chi-Chen Yang ◽  
Han-Shu Hu ◽  
Ren-Huang Wu ◽  
Szu-Huei Wu ◽  
Shiow-Ju Lee ◽  
...  

ABSTRACTDengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 μM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.


Sign in / Sign up

Export Citation Format

Share Document