Faculty Opinions recommendation of Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila.

Author(s):  
Jane Hubbard
2008 ◽  
Vol 313 (2) ◽  
pp. 700-712 ◽  
Author(s):  
Hwei-Jan Hsu ◽  
Leesa LaFever ◽  
Daniela Drummond-Barbosa

2020 ◽  
Vol 64 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ben L. Carty ◽  
Elaine M. Dunleavy

Abstract Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0213327 ◽  
Author(s):  
Deepthy Francis ◽  
Bhavna Chanana ◽  
Beatriz Fernandez ◽  
Benjamin Gordon ◽  
Tiffany Mak ◽  
...  

2019 ◽  
Vol 31 (8) ◽  
pp. 1315 ◽  
Author(s):  
Daguia Zambe John Clotaire ◽  
Yudong Wei ◽  
Xiuwei Yu ◽  
Tamgue Ousman ◽  
Jinlian Hua

Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.


Sign in / Sign up

Export Citation Format

Share Document