scholarly journals YAP/Yorkie in the germline modulates the age-related decline of germline stem cells and niche cells

PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0213327 ◽  
Author(s):  
Deepthy Francis ◽  
Bhavna Chanana ◽  
Beatriz Fernandez ◽  
Benjamin Gordon ◽  
Tiffany Mak ◽  
...  
2015 ◽  
Vol 27 (6) ◽  
pp. 969 ◽  
Author(s):  
Neha Garg ◽  
David A. Sinclair

Fertility is the first biological process to break down during aging, thereby making it a useful tool to understand fundamental processes of aging. Reproductive aging in females is associated with a loss of ovarian function characterised by a reduction in the number and quality of oocytes. The central dogma, namely that females are born with a fixed pool of oocytes that progressively decline with increasing maternal age, has been challenged by evidence supporting postnatal oogenesis in mammals. Reports demonstrating formation of new oocytes from newly discovered germline stem cells, referred to as oogonial stem cells (OSCs), has opened new avenues for treatment of female infertility. In this review we discuss why the OSCs possibly lose their regenerative potential over time, and focus specifically on the aging process in germline stem cells as a possible mechanism for understanding female age-related infertility and how we can slow or delay ovarian aging.


Author(s):  
Theadora Tolkin ◽  
E. Jane Albert Hubbard

Like many animals and humans, reproduction in the nematode C. elegans declines with age. This decline is the cumulative result of age-related changes in several steps of germline function, many of which are highly accessible for experimental investigation in this short-lived model organism. Here we review recent work showing that a very early and major contributing step to reproductive decline is the depletion of the germline stem and progenitor cell pool. Since many cellular and molecular aspects of stem cell biology and aging are conserved across animals, understanding mechanisms of age-related decline of germline stem and progenitor cells in C. elegans has broad implications for aging stem cells, germline stem cells, and reproductive aging.


2020 ◽  
Vol 64 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ben L. Carty ◽  
Elaine M. Dunleavy

Abstract Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.


Sign in / Sign up

Export Citation Format

Share Document