Faculty Opinions recommendation of Molecular identification of a retinal cell type that responds to upward motion.

Author(s):  
David Zenisek ◽  
Christina Joselevitch
Nature ◽  
2008 ◽  
Vol 452 (7186) ◽  
pp. 478-482 ◽  
Author(s):  
In-Jung Kim ◽  
Yifeng Zhang ◽  
Masahito Yamagata ◽  
Markus Meister ◽  
Joshua R. Sanes

2005 ◽  
Vol 7 (10) ◽  
pp. 1367-1374 ◽  
Author(s):  
Alexis-Pierre Bemelmans ◽  
Sébastien Bonnel ◽  
Leïla Houhou ◽  
Noëlle Dufour ◽  
Emeline Nandrot ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qingnan Liang ◽  
Rachayata Dharmat ◽  
Leah Owen ◽  
Akbar Shakoor ◽  
Yumei Li ◽  
...  

AbstractSingle-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are observed and marker genes for each cell type are identified. The gene expression of the macular and peripheral retina is compared to each other at cell-type level. Furthermore, our dataset shows an improved power for prioritizing genes associated with human retinal diseases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen tissues can provide insight missed by either human bulk RNA-seq or animal models.


1994 ◽  
Vol 11 (4) ◽  
pp. 629-642 ◽  
Author(s):  
V. Möckel ◽  
S. Löhrke ◽  
H.-D. Hofmann

AbstractWe have used monolayer cultures prepared from early postnatal rabbit retinae (days 2–5) by the sandwich technique to study the capacity of immature neurons to express specific neuronal phenotypes in a homogeneous in vitro environment. Applying morphological, immunocytochemical, and autoradiographic criteria, we demonstrate that a variety of phenotypes could be distinguished after 7–14 days in vitro, and correlated with known retinal cell types. Bipolar cell-like neurons (approximately 4% of total cell number) were identified by cell type-specific monoclonal antibodies (115A10) and their characteristic bipolar morphology. Small subpopulations (about 1%) of GABA-immunoreactive neurons acquired elaborate morphologies strikingly similar to those of A- and B-type horizontal cells. Amongst putative amacrine cells several different subpopulations could be classified. GABA-immunoreactive amacrine-like neurons (6.5%), which also showed high affinity [3H]-GABA uptake, comprised cells of varying size and shape and could be subdivided into subpopulations with respect to their response to different glutamate receptor agonists (NMDA, kainic acid, quisqualic acid). In addition, a small percentage of [3H]-GABA accumulating cells with large dendritic fields showed tyrosine-hydroxylase immunoreactivity. Presumptive glycinergic amacrine cells (18.5%) were rather uniform in shape and had small dendritic fields. Release of [3H]-glycine from these neurons was evoked by kainic and quisqualic acid but not by NMDA. Small [3H]-glutamate accumulating neurons with few short processes were the most frequent cell type (73%). This cell type also exhibited opsin immunoreactivity and probably represented incompletely differentiated photoreceptor cells. Summing the numbers of characterized cells indicated that we were able to attribute a defined retinal phenotype to most, if not all of the cultured neurons. Thus, we have demonstrated that immature neuronal cells growing in monolayer cultures, in the absence of a structured environment, are capable of maintaining or producing specific morphological and functional properties corresponding to those expressed in vivo. These results stress the importance of intrinsic factors for the regulation of neuronal differentiation. On the other hand, morphological differentiation was far from perfect indicating the requirement for regulatory factors.


2021 ◽  
Author(s):  
Sangeetha Kandoi ◽  
Cassandra Martinez ◽  
Dana Merriman ◽  
Deepak A Lamba

Purpose: The cone-dominant, 13-lined ground squirrel (13-LGS) retina mimics the human foveal region but retinal development in this useful rodent species has not been reported. Here, the embryonic and postnatal development of the 13-LGS retina was studied to further characterize the species as a practical alternative animal model for investigating cone-based vision in health and disease. Methods: The spatiotemporal expression of key progenitor and cell type markers was examined in retinas from defined embryonic and postnatal stages using immunohistochemistry. Changes in the postnatal gene expression were also assessed by qPCR. Results: The 13-LGS neuroblastic layer expressed key progenitor markers (Sox2, Vsx2, Pax6, and Lhx2) at E18. Sequential cell fate determination evidenced by the first appearance of cell type-specific marker labeling was: at E18, ganglion cells (Brn-3A, HuC/D) and microglia (Iba1); at E24-25.5 shortly before birth, photoreceptor progenitor (Otx2, Recoverin), horizontal and amacrine cells (Lhx1, Oc1); and at P15, bipolar cells (Vsx1, CaBP5) and Muller glia cells (GS, Rlbp1). Photoreceptor maturation indicated by opsin+ outer segments and PNA labeling of cone sheaths was completed at the time of eye opening, P21-24. Conclusions: The timeline and order of retinal cell development in the 13-LGS generally matches that recorded from other mammalian models but with a stark variation in the proportion of various cell types due to cone-dense photoreceptors. This provides a baseline for future examinations of developmental, disease model, and stem cell approach studies employing this emerging rodent model of human vision.


2005 ◽  
Vol 233 (2) ◽  
pp. 680-694 ◽  
Author(s):  
Brian D. Perkins ◽  
Claire S. Nicholas ◽  
Lisa M. Baye ◽  
Brian A. Link ◽  
John E. Dowling

Sign in / Sign up

Export Citation Format

Share Document