Faculty Opinions recommendation of Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication.

Author(s):  
Michael Lenhard
2019 ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background: The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. Results: Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. Conclusion: VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. Results Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. Conclusion VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


2019 ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background: The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported.Results: Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion.Conclusion: VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

Sign in / Sign up

Export Citation Format

Share Document