Faculty Opinions recommendation of Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

Author(s):  
Richard Frankham
Nature ◽  
2008 ◽  
Vol 454 (7200) ◽  
pp. 96-99 ◽  
Author(s):  
Jason M. Hall-Spencer ◽  
Riccardo Rodolfo-Metalpa ◽  
Sophie Martin ◽  
Emma Ransome ◽  
Maoz Fine ◽  
...  

2017 ◽  
Vol 158 ◽  
pp. 65-75 ◽  
Author(s):  
Vassilis Kitidis ◽  
Ian Brown ◽  
Nicholas Hardman-Mountford ◽  
Nathalie Lefèvre

2021 ◽  
Vol 6 (6) ◽  
pp. 212-214
Author(s):  
AA El-Meligi

There is a significant effect of carbon dioxide on the acidification of the ocean. This research focuses on the acidification of the ocean and its effect on the animal life in the ocean. Also, it focuses on the effect of carbon dioxide concentration in the atmosphere on the ocean acidification. The data are collected from the research institutions and laboratories, such as National Snow and Ice Data Center (NSIDC), Japan, National Oceanic and Atmospheric Administration (NOAA), USA, Mauna Loa Observatory in Hawaii, and other sources of research about acidification of ocean. The results show that the acidity increases with increasing the amount of carbon dioxide in the atmosphere. This is because ocean absorbs nearly 50% of carbon dioxide from the atmosphere. Carbonate ions (CO32-) will be used in forming carbonic acid, which will increase the acidity of the water. Increasing the acidity of water will affect building of the animal Skeleton. It is recommended to reduce the amount of carbon dioxide in the atmosphere; therefore the acidity will be decreased in the ocean.


2021 ◽  
Author(s):  
Georgios Vagenas ◽  
Theano Iliopoulou ◽  
Panayiotis Dimitriadis ◽  
Demetris Koutsoyiannis

<p>Since the pre-industrial era at the end of the 18<sup>th</sup> century, the atmospheric carbon dioxide concentration (CO<sub>2</sub>) has increased by 47.46% from the level of 280 ppmv (parts per million volume) to 412.89 ppmv (Mauna Loa – NOAA Station, November 2020). These increased concentrations caused by natural & anthropogenic activities, interact with the aquatic environment which acts as a safety valve. Nevertheless, the absorbed CO<sub>2 </sub>amounts undergo chemical transformations, resulting in increasing ionized concentrations that can significantly reduce the water’s pH, a process described as ocean acidification. Here, we use the HOT (Hawaii-Ocean-Time series) to perform time series analysis for temperature, carbon dioxide partial pressure and pH. More specifically, we analyze their temporal changes in month and annual time lag. Then, we proceed in comparisons with relevant studies on atmospheric data to evaluate the produced results. Finally, we make an effort to disentangle the results with simplified assumptions connected with the observed impact of ocean acidification on the aquatic ecosystems.</p>


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0214403 ◽  
Author(s):  
Devon Northcott ◽  
Jeff Sevadjian ◽  
Diego A. Sancho-Gallegos ◽  
Chris Wahl ◽  
Jules Friederich ◽  
...  

2018 ◽  
Vol 41 (1) ◽  
pp. 66-89 ◽  
Author(s):  
Sandra L. Cooke ◽  
Sojung C. Kim

Ocean acidification (OA) occurs when carbon dioxide (CO2) dissolves into oceans. OA and climate change are both caused by anthropogenic CO2 emissions, and many scientists consider them equally critical problems. We assess if preexisting beliefs, ideologies, value predispositions, and demographics affect OA perceptions among the U.S. public. Nearly 80% of respondents know little about OA, but concern increased following a message explaining OA and climate change, especially among females, liberals, and climate change believers. OA information seeking intentions and research support were also greater among females, liberals, and climate change believers. We discuss implications for efforts to increase OA public awareness.


2017 ◽  
Vol 98 (6) ◽  
pp. 1227-1229 ◽  
Author(s):  
Angus R. Westgarth-Smith

Ocean acidification (OA) is caused by increasing atmospheric concentrations of carbon dioxide, which dissolves in seawater to produce carbonic acid. This carbonic acid reduces the availability of dissolved aragonite needed for production of some invertebrate exoskeletons with potentially severe consequences for marine calcifier populations. There is a lack of public information on OA with less than 1% of press coverage on OA compared with climate change; OA is not included in UK GCSE and A Level specifications and textbooks; environmental campaigners are much less active in campaigning about OA compared with climate change. As a result of the lack of public awareness OA is rarely discussed in the UK Parliament. Much more public education about OA is needed so that people can respond to the urgent need for technological and lifestyle changes needed to massively reduce carbon dioxide emissions.


Sign in / Sign up

Export Citation Format

Share Document