Faculty Opinions recommendation of Fusion of the tetanus toxin C fragment binding domain and Bcl-xL for protection of peripheral nerve neurons.

Author(s):  
A Gordon Smith
Neurosurgery ◽  
2008 ◽  
Vol 63 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Erin Carlton ◽  
Qingshan Teng ◽  
Thais Federici ◽  
Jun Yang ◽  
Jonathan Riley ◽  
...  

2002 ◽  
Vol 74 (6) ◽  
pp. 2528-2536 ◽  
Author(s):  
Jonathan W. Francis ◽  
Robert H. Brown ◽  
Dayse Figueiredo ◽  
Mary P. Remington ◽  
Orlando Castillo ◽  
...  

Biochemistry ◽  
2002 ◽  
Vol 41 (46) ◽  
pp. 13644-13652 ◽  
Author(s):  
Heather A. Louch ◽  
Ellen S. Buczko ◽  
Mary A. Woody ◽  
Richard M. Venable ◽  
Willie F. Vann

Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


Author(s):  
Arthur J. Wasserman ◽  
Azam Rizvi ◽  
George Zazanis ◽  
Frederick H. Silver

In cases of peripheral nerve damage the gap between proximal and distal stumps can be closed by suturing the ends together, using a nerve graft, or by nerve tubulization. Suturing allows regeneration but does not prevent formation of painful neuromas which adhere to adjacent tissues. Autografts are not reported to be as good as tubulization and require a second surgical site with additional risks and complications. Tubulization involves implanting a nerve guide tube that will provide a stable environment for axon proliferation while simultaneously preventing formation of fibrous scar tissue. Supplementing tubes with a collagen gel or collagen plus extracellular matrix factors is reported to increase axon proliferation when compared to controls. But there is no information regarding the use of collagen fibers to guide nerve cell migration through a tube. This communication reports ultrastructural observations on rat sciatic nerve regeneration through a silicone nerve stent containing crosslinked collagen fibers.Collagen fibers were prepared as described previously. The fibers were threaded through a silicone tube to form a central plug. One cm segments of sciatic nerve were excised from Sprague Dawley rats. A control group of rats received a silicone tube implant without collagen while an experimental group received the silicone tube containing a collagen fiber plug. At 4 and 6 weeks postoperatively, the implants were removed and fixed in 2.5% glutaraldehyde buffered by 0.1 M cacodylate containing 1.5 mM CaCl2 and balanced by 0.1 M sucrose. The explants were post-fixed in 1% OSO4, block stained in 1% uranyl acetate, dehydrated and embedded in Epon. Axons were counted on montages prepared at a total magnification of 1700x. Montages were viewed through a dissecting microscope. Thin sections were sampled from the proximal, middle and distal regions of regenerating sciatic plugs.


2017 ◽  
Vol 22 (2) ◽  
pp. 3-5
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Physicians use a variety of methodologies within the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Sixth Edition, to rate nerve injuries depending on the type of injury and location of the nerve. Traumatic injuries that cause impairment to the peripheral or brachial plexus nerves are rated using Section 15.4e, Peripheral Nerve and Brachial Plexus Impairment, for upper extremities and Section 16.4c, Peripheral Nerve Rating Process, for lower extremities. Verifiable nerve lesions that incite the symptoms of complex regional pain syndrome, type II (similar to the former concept of causalgia), also are rated in these sections. Nerve entrapments, which are not isolated traumatic events, are rated using the methodology in Section 15.4f, Entrapment Neuropathy. Type I complex regional pain syndrome is rated using Section 15.5, Complex Regional Pain Syndrome for upper extremities or Section 16.5, Complex Regional Pain Syndrome for lower extremities. The method for grading the sensory and motor deficits is analogous to the method described in previous editions of AMA Guides. Rating the permanent impairment of the peripheral nerves or brachial plexus is similar to the methodology used in the diagnosis-based impairment scheme with the exceptions that the physical examination grade modifier is never used to adjust the default rating and the names of individual nerves or plexus trunks, as opposed to the names of diagnoses, appear in the far left column of the rating grids.


Sign in / Sign up

Export Citation Format

Share Document