Faculty Opinions recommendation of Diagnosis of Fanconi anemia in patients with bone marrow failure.

Author(s):  
Albert N Békássy
2013 ◽  
Vol 61 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Susan R. Rose ◽  
Mi-Ok Kim ◽  
Leslie Korbee ◽  
Kimberly A. Wilson ◽  
M. Douglas Ris ◽  
...  

2016 ◽  
Vol 8 ◽  
pp. 2016054 ◽  
Author(s):  
Hosein Kamranzadeh fumani ◽  
Mohammad Zokaasadi ◽  
Amir Kasaeian ◽  
Kamran Alimoghaddam ◽  
Asadollah Mousavi ◽  
...  

Background & objectives: Fanconi anemia (FA) is a rare genetic disorder caused by an impaired DNA repair mechanism which leads to an increased tendency toward malignancies and progressive bone marrow failure. The only curative management available for hematologic abnormalities in FA patients is hematopoietic stem cell transplantation (HSCT). This study aimed to evaluate the role of HSCT in FA patients.Methods: Twenty FA patients with ages of 16 or more who underwent HSCT between 2002 and 2015 enrolled in this study. All transplants were allogeneic and the stem cell source was peripheral blood and all patients had a full HLA-matched donor.Results: Eleven patients were female and 9 male (55% and 45%). Mean age was 24.05 years. Mortality rate was 50% (n=10) and the main cause of death was GVHD. Survival analysis showed an overall 5-year survival of 53.63% and 13 year survival of 45.96 % among patients.Conclusion: HSCT is the only curative management for bone marrow failure in FA patients and despite high rate of mortality and morbidity it seems to be an appropriate treatment with an acceptable long term survival rate for adolescent and adult group.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 822-826 ◽  
Author(s):  
Philip S. Rosenberg ◽  
Mark H. Greene ◽  
Blanche P. Alter

Abstract Fanconi anemia (FA) is an autosomal recessive condition associated with congenital abnormalities, progressive pancytopenia, and a predisposition to leukemia and solid tumors. We studied a retrospective cohort of North American patients with FA. We calculated relative risks of cancer compared to the general population and cause-specific hazards of the first major adverse outcomes of FA: bone marrow transplantation (BMT) for marrow complications, acute myeloid leukemia (AML), solid tumors, or death from bone marrow failure. We also estimated the cumulative incidence of each adverse event in the presence of the competing risks. Among 145 patients with FA, 9 developed leukemia and 14 developed a total of 18 solid tumors. The ratio of observed to expected cancers (O/E ratio) was 50 for all cancers, 48 for all solid tumors, and 785 for leukemia; these increased risks were statistically significant. The highest solid tumor O/E ratios were 4317 for vulvar cancer, 2362 for esophageal cancer, and 706 for head and neck cancer. Cause-specific hazards of both death and AML peaked at 1%/y in teenage years; the hazard of BMT peaked at 4%/y at age 7. In contrast, the hazard of a solid tumor approached 8%/y by age 40 years. The cumulative incidence to age 48 was 10% for leukemia, 11% for death from marrow failure, 29% for a solid tumor, and 43% for BMT. The risk of a solid tumor may become even higher as death from aplastic anemia is reduced and as patients survive longer after BMT.


Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2081-2084 ◽  
Author(s):  
Xiaxin Li ◽  
P. Artur Plett ◽  
Yanzhu Yang ◽  
Ping Hong ◽  
Brian Freie ◽  
...  

Abstract The pathogenesis of bone marrow failure in Fanconi anemia is poorly understood. Suggested mechanisms include enhanced apoptosis secondary to DNA damage and altered inhibitory cytokine signaling. Recent data determined that disrupted cell cycle control of hematopoietic stem and/or progenitor cells disrupts normal hematopoiesis with increased hematopoietic stem cell cycling resulting in diminished function and increased sensitivity to cell cycle–specific apoptotic stimuli. Here, we used Fanconi anemia complementation type C–deficient (Fancc–/–) mice to demonstrate that Fancc–/– phenotypically defined cell populations enriched for hematopoietic stem and progenitor cells exhibit increased cycling. In addition, we established that the defect in cell cycle regulation is not a compensatory mechanism from enhanced apoptosis occurring in vivo. Collectively, these data provide a previously unrecognized phenotype in Fancc–/– hematopoietic stem/progenitor cells, which may contribute to the progressive bone marrow failure in Fanconi anemia.


Hematology ◽  
2004 ◽  
Vol 2004 (1) ◽  
pp. 318-336 ◽  
Author(s):  
Grover C. Bagby ◽  
Jeffrey M. Lipton ◽  
Elaine M. Sloand ◽  
Charles A. Schiffer

Abstract New discoveries in cell biology, molecular biology and genetics have unveiled some of the pathophysiological mysteries of some of the bone marrow failure syndromes. Many of these discoveries have revealed why these syndromes show so much clinical overlap and some hold the potential for influencing the development of new therapies. In children and adults with pancytopenia and hypoplastic bone marrows proper differential diagnosis requires that some attention be directed toward defining molecular and cellular pathogenetic mechanisms because, once identified, some of these mechanisms will clearly suggest rational therapeutic approaches, treatment options that should be avoided, or both. In Section I, Drs. Jeffrey Lipton and Grover Bagby review the approach to diagnosis and management of patients with the inherited bone marrow failure syndromes, Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and the Shwachman-Diamond syndrome. Extraordinary progress has been made in identifying the genes bearing pathogenetically relevant mutations in these disorders, but slower progress has been made in defining the precise functions of the proteins these genes encode in normal cells, in part because it is increasingly obvious that the proteins are multifunctional. In practice, it is clear that in patients with dyskeratosis congenita and Fanconi anemia, the diagnosis must be considered not only in children but in adults as well. In Section II, Dr. Elaine Sloand outlines a very practical and evidence-based approach to diagnosis and management of acquired hypoplastic states emphasizing overlap between non-clonal and clonal hematopoiesis is such conditions. The pathogenesis of T lymphocyte–mediated marrow failure is presented as a clear-cut rationale for use of immunosuppressive therapy and stem cell transplantation. Practical management of patients with refractory disease with and without evidence of clonal evolution (either paroxysmal nocturnal hemoglobinuria [PNH] or myelodysplasia [MDS]) is presented. In Section III, the challenge of hypoplastic MDS is reviewed by Dr. Charles Schiffer. After reviewing the most up-to-date classification scheme, therapeutic options are reviewed, focusing largely on agents that have most recently shown some promising activity, including DNA demethylating agents, thalidomide and CC5013, arsenic trioxide, and immunosuppressive therapy. Here are also outlined the rationale and the indications for choosing allogeneic bone marrow transplantation, the only therapy with known curative potential.


Sign in / Sign up

Export Citation Format

Share Document