Faculty Opinions recommendation of The origin of the electrostatic perturbation in acetoacetate decarboxylase.

Author(s):  
Squire Booker
Nature ◽  
2009 ◽  
Vol 459 (7245) ◽  
pp. 393-397 ◽  
Author(s):  
Meng-Chiao Ho ◽  
Jean-François Ménétret ◽  
Hiro Tsuruta ◽  
Karen N. Allen

1991 ◽  
Vol 46 (1) ◽  
pp. 99-106 ◽  
Author(s):  
S. K. Sharma ◽  
A. Sudarshan

In this paper, we use the hydrodynamic approach to study the stimulated scattering of high-frequency electromagnetic waves by a low-frequency electrostatic perturbation that is either an upper- or lower-hybrid wave in a two-electron-temperature plasma. Considering the four-wave interaction between a strong high-frequency pump and the low-frequency electrostatic perturbation (LHW or UHW), we obtain the dispersion relation for the scattered wave, which is then solved to obtain an explicit expression for the growth rate of the coupled modes. For a typical Q-machine plasma, results show that in both cases the growth rate increases with noh/noc. This is in contrast with the results of Guha & Asthana (1989), who predicted that, for scattering by a UHW perturbation, the growth rate should decrease with increasing noh/noc.


2007 ◽  
Vol 73 (24) ◽  
pp. 7814-7818 ◽  
Author(s):  
T. Hanai ◽  
S. Atsumi ◽  
J. C. Liao

ABSTRACT A synthetic pathway was engineered in Escherichia coli to produce isopropanol by expressing various combinations of genes from Clostridium acetobutylicum ATCC 824, E. coli K-12 MG1655, Clostridium beijerinckii NRRL B593, and Thermoanaerobacter brockii HTD4. The strain with the combination of C. acetobutylicum thl (acetyl-coenzyme A [CoA] acetyltransferase), E. coli atoAD (acetoacetyl-CoA transferase), C. acetobutylicum adc (acetoacetate decarboxylase), and C. beijerinckii adh (secondary alcohol dehydrogenase) achieved the highest titer. This strain produced 81.6 mM isopropanol in shake flasks with a yield of 43.5% (mol/mol) in the production phase. To our knowledge, this work is the first to produce isopropanol in E. coli, and the titer exceeded that from the native producers.


1985 ◽  
Vol 31 (4) ◽  
pp. 596-598 ◽  
Author(s):  
M Kimura ◽  
K Kobayashi ◽  
A Matsuoka ◽  
K Hayashi ◽  
Y Kimura

Abstract In this sensitive, reproducible method for determination of D-3-hydroxybutyrate (3-OHB) in plasma, it is converted to acetone by use of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30)/lactate dehydrogenase (EC 1.1.1.27) coupled with acetoacetate decarboxylase (EC 4.1.1.4). The resulting acetone is detected by head-space gas chromatography. The lowest concentration of 3-OHB detectable in plasma was 2 mumol/L. The calibration curve showed a linear relationship for 3-OHB concentration from 0 to 5 mmol/L (r = 0.999). Analytical recovery of 3-OHB (50 mumol/L) was 97.9 (SD 3.8)%. The method was developed for determination of the three ketone bodies in plasma. The ratio of acetone to acetoacetate was not significantly different (p greater than 0.2) between normals (n = 31) and diabetics (n = 86). In normal subjects, the ratio of 3-OHB to acetoacetate was 1.20 (SD 0.44). In diabetic patients, the ratio correlated with the logarithm of the total ketone body concentration (r = 0.828).


Biochemistry ◽  
1966 ◽  
Vol 5 (3) ◽  
pp. 823-833 ◽  
Author(s):  
Florence Lederer ◽  
Stephen M. Coutts ◽  
Richard A. Laursen ◽  
F. H. Westheimer

Sign in / Sign up

Export Citation Format

Share Document