Faculty Opinions recommendation of Q fever, spotted fever group, and typhus group rickettsioses among hospitalized febrile patients in northern Tanzania.

Author(s):  
Ralph Corey
Author(s):  
Sruti Pisharody ◽  
Matthew P. Rubach ◽  
Manuela Carugati ◽  
William L. Nicholson ◽  
Jamie L. Perniciaro ◽  
...  

Q fever and spotted fever group rickettsioses (SFGR) are common causes of severe febrile illness in northern Tanzania. Incidence estimates are needed to characterize the disease burden. Using hybrid surveillance—coupling case-finding at two referral hospitals and healthcare utilization data—we estimated the incidences of acute Q fever and SFGR in Moshi, Kilimanjaro, Tanzania, from 2007 to 2008 and from 2012 to 2014. Cases were defined as fever and a four-fold or greater increase in antibody titers of acute and convalescent paired sera according to the indirect immunofluorescence assay of Coxiella burnetii phase II antigen for acute Q fever and Rickettsia conorii (2007–2008) or Rickettsia africae (2012–2014) antigens for SFGR. Healthcare utilization data were used to adjust for underascertainment of cases by sentinel surveillance. For 2007 to 2008, among 589 febrile participants, 16 (4.7%) of 344 and 27 (8.8%) of 307 participants with paired serology had Q fever and SFGR, respectively. Adjusted annual incidence estimates of Q fever and SFGR were 80 (uncertainty range, 20–454) and 147 (uncertainty range, 52–645) per 100,000 persons, respectively. For 2012 to 2014, among 1,114 febrile participants, 52 (8.1%) and 57 (8.9%) of 641 participants with paired serology had Q fever and SFGR, respectively. Adjusted annual incidence estimates of Q fever and SFGR were 56 (uncertainty range, 24–163) and 75 (uncertainty range, 34–176) per 100,000 persons, respectively. We found substantial incidences of acute Q fever and SFGR in northern Tanzania during both study periods. To our knowledge, these are the first incidence estimates of either disease in sub-Saharan Africa. Our findings suggest that control measures for these infections warrant consideration.


2011 ◽  
Vol 53 (4) ◽  
pp. e8-e15 ◽  
Author(s):  
M. Prabhu ◽  
W. L. Nicholson ◽  
A. J. Roche ◽  
G. J. Kersh ◽  
K. A. Fitzpatrick ◽  
...  

Author(s):  
David Ndeereh ◽  
Gerald Muchemi ◽  
Andrew Thaiyah

Many factors contribute to misdiagnosis and underreporting of infectious zoonotic diseases in most sub-Saharan Africa including limited diagnostic capacity and poor knowledge. We assessed the knowledge, practices and attitudes towards spotted fever group rickettsioses (SFGR) and Q fever amongst local residents in Laikipia and Maasai Mara in Kenya. A semistructured questionnaire was administered to a total of 101 respondents including 51 pastoralists, 17 human health providers, 28 wildlife sector personnel and 5 veterinarians. The pastoralists expressed no knowledge about SFGR and Q fever. About 26.7% of the wildlife sector personnel in Laikipia expressed some knowledge about SFGR and none in Maasai Mara. None of these respondents had knowledge about Q fever. About 45.5 and 33.3% of the health providers in Laikipia and Maasai Mara respectively expressed knowledge about SFGR and 9.1% in Laikipia expressed good knowledge on Q fever and none in Maasai Mara. The diseases are not considered amongst potential causes of febrile illnesses in most medical facilities except in one facility in Laikipia. Majority of pastoralists practiced at least one predisposing activity for transmission of the diseases including consumption of raw milk, attending to parturition and sharing living accommodations with livestock. Education efforts to update knowledge on medical personnel and One-Health collaborations should be undertaken for more effective mitigation of zoonotic disease threats. The local communities should be sensitized through a multidisciplinary approach to avoid practices that can predispose them to the diseases.


Author(s):  
Lisa Sun ◽  
Michael V. Johnston

Tick-borne rickettsioses are emerging as more important health problems throughout the world. The spotted fever group including Rickettsia rickettsia can cause encephalopathy, meningitis and brain damage by selectively targeting capillary endothelial cells in the brain, and stimulating inflammation, capillary leakage, hemorrhage, and intravascular coagulation. Rickettsia are are arthropod-borne gram-negative coccobacilli bacteria and are obligate intracellular organisms that do not survive in artificial medium. In North and South America, the most common rickettsial disorder is rocky mountain spotted fever (RMSF) transmitted by the dog tick Dermacentor variabilis or the wood tick Dermacentor andersoni. A characteristic “starry sky” pattern can be seen on MRI imaging of the brain in some patients with RMSF encephalopathy and is thought to reflect the organisms targeting of brain endothelial cells in capillaries the white matter. Early treatment with doxycycline is curative and reverses signs of encephalopathy if given within a few day of onset, but delayed treatment can be associated with permanent neurological disability. The typhus group of rickettsia bacteria include R. prowazekii, which causes epidemic typhus and R. typhi, which causes murine typhus (endemic) typhus in tropical and subtropical parts of the world. Flying squirrels and humans carry R prowazekii and rats are carry R. typhi. Q fever caused by the rickettsia organism Coxiella burnetti is transmitted from farm animals including sheep and is seen throughout the world including the United States.


2017 ◽  
Author(s):  
Lucas S Blanton

Infections caused by organisms of the genus Rickettsia, Orientia, Ehrlichia, Anaplasma, and Coxiella occur throughout the world and are important, yet often overlooked, causes of febrile illness. They are transmitted by ticks, lice, mites, fleas, and, in the case of Coxiella, infected aerosols. Some are considered emerging and reemerging infectious diseases, as exemplified by the emergence of Rocky Mountain spotted fever in the American Southwest and Mexico; the reemergence of murine typhus in parts of Texas; and the discovery of new pathogens, such as Ehrlichia muris–like agent. Manifestations are usually of an acute undifferentiated febrile illness, with associated headache, malaise, myalgias, and varying frequency of rash. Since confirmation of diagnosis is often retrospective, requiring the dynamic change in antibody titers from acute and convalescent phase sera, clinical recognition for empirical treatment is imperative. Indeed, timely treatment is effective at abating symptoms and preventing complications. This review discusses important aspects of the epidemiology, clinical manifestations, diagnostic methods, and treatment of infections caused by Rickettsia and related organisms.  This review contains 5 figures, 9 tables, and 50 references. Key words: anaplasmosis, ehrlichiosis, Q fever, Rocky Mountain spotted fever, scrub typhus, spotted fever group rickettsioses, typhus group rickettsioses


2021 ◽  
Author(s):  
Chien-Chung Chao ◽  
Zhiwen Zhang ◽  
Tatyana Belinskaya ◽  
Hua-Wei Chen ◽  
Wei-Mei Ching

ABSTRACT Introduction Leptospirosis and rickettsial diseases are global zoonotic diseases. In severe infection cases, mortality can range from 10% to 30%. Currently most epidemiological data available are based on outbreak investigations and hospital-based studies from endemic countries. The U.S. soldiers at military bases in these countries are highly vulnerable due to the fact that most of them are immunologically naïve to these pathogens. No risk assessment of leptospirosis and rickettsial diseases among U.S. military personnel in Honduras is currently available. This study was aimed at determining the prevalence of leptospirosis and rickettsial diseases in U.S. military personnel deployed to Honduras using serological assays. Materials and Methods A cohort of pre- and post-deployment sera from the most recent 1,000 military personnel stationed in Honduras for at least 6 months between 2000 and 2016 was identified for this study. Serum specimens from these eligible subjects were retrieved. All post-deployment serum specimens were screened at a dilution of 1:100 for the presence of IgG antibodies to Leptospira and Rickettsia pathogens. The pre-deployment sera from those individuals with post-deployment IgG antibodies above cutoff (i.e., seropositive) were tested to determine seroconversion. Seroconversion was defined as conversion of an optical density value from below the cutoff (i.e., negative) in a pre-deployed specimen to above the cutoff (i.e., positive) in a post-deployed specimen at a titer of 100. Results The seropositive post-deployment specimens for antibodies against Leptospira (causing leptospirosis), Rickettsia typhi (causing murine typhus [MT]), spotted fever group rickettsioses (SFGR, causing SFG Rickettsia), Orientia tsutsugamushi (causing scrub typhus [ST]), and Coxiella burnetii (causing Q fever [QF]) were 11.6%, 11.3%, 6%, 5.6%, and 8.0%, respectively. The seroconverted rate in those assigned to Honduras from 2000 to 2016 was 7.3%, 1.9%, 3.9%, 4.3%, and 2.7% for leptospirosis, MT, SFGR, ST, and QF, respectively. Among the seroconverted specimens, 27 showed seroconversion of at least two antibodies. These seroconverted individuals accounted for 8.8% (3 out of 34) of the personnel who looked for medical attention during their deployment. Conclusions Our results suggest a leptospirosis seroconversion rate of 7.3%, which is higher than the 0.9% and 3.9% seroconversion in Korea and Japan, respectively. The higher rate of seroconversion indicates potential risk of Leptospira exposure. Additional testing of water samples in the pools and pits around the training sites to locate the infected areas is important to eliminate or reduce future exposure to Leptospira during trainings. The rates of seroconversion for ST, MT, spotted fever Rickettsia, and QF were 4.3%, 1.9%, 3.9%, and 2.7%, respectively, indicating the potential exposure to a variety of rickettsial-related pathogens. Testing of vectors for rickettsial pathogens in the areas could inform effective vector control countermeasures to prevent exposure. Proper precaution and protective measures are needed to better protect military personnel deployed to Honduras.


Author(s):  
A. Yu. Popova ◽  
A. N. Kulichenko ◽  
O. V. Maletskaya ◽  
V. M. Dubyansky ◽  
A. G. Ryazanova ◽  
...  

Aim. Analysis of results of epidemiologic monitoring of especially dangerous, natural-foci and other infectious diseases, as well as epizootologic activity of natural foci of infection on the territory of city-resort Sochi. Materials and methods. Laboratory studies of 820 samples by PCR, immune- and bacteriologic methods were carried out, among those 344 - clinical material, 12 - water from open bodies and 321 - field material. Molecular-genetic identification of 143 strains of Vibrio cholerae, isolated from open water bodies of city-resort Sochi, was carried out. Results. Circulation of causative agents of Q fever, tularemia and hemorrhagic fever with renal syndrome of Dobrava-Adler genotypes was established, as well as rickettsia of tick spotted fever group. Predomination of rotaviruses (70.9%) was detected during study of samples of clinical material in etiologic structure of sporadically emerging acute intestine infections. Relatively high temperature values of river water during summer months (from 18 to 30°C), exit of sulfide mineral waters into the riverbed, that create alkaline medium, seasonal reduction of river debit and speed of water current facilitated sustenance of contamination of water of Agura river by V. cholerae. Conclusion. Activity of natural foci of the infectious disease and contamination of Agura river by V. cholerae 01 (atoxigenic) gives evidence on the necessity of constant control of epidemiologic situation by dangerous and natural-foci infectious diseases on the territory of city-resort Sochi, as well as study regional features of their causative agents, including using genetic methods.


Author(s):  
Tom Fletcher ◽  
Nick Beeching

Rickettsial infections are caused by a variety of obligate intracellular, Gram-negative bacteria from the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. Rickettsia is further subdivided into the spotted fever group and the typhus group. Bartonella and Coxiella burnetii bacteria are similar to rickettsiae and cause similar diseases. The range of recognized spotted fever group infections is rapidly expanding, complementing long-recognized examples such as Rocky Mountain spotted fever (Rickettsia rickettsii) in the US, and Australian tick typhus (Rickettsia australis), as well as those in southern Europe and Africa. Animals are the predominant reservoir of infection, and transmission to people is usually through ticks, mites, fleas, or lice, during blood-feeding or from scarification of faeces deposited on the skin. This chapter focuses on the two of the most relevant infections encountered in UK practice: African tick typhus, and Q fever.


1998 ◽  
Vol 72 (12) ◽  
pp. 1311-1316 ◽  
Author(s):  
Mikio KIMURA ◽  
Tatsuya FUJII ◽  
Aikichi IWAMOTO

Author(s):  
Matthew T Milholland ◽  
Lars Eisen ◽  
Robyn M Nadolny ◽  
Andrias Hojgaard ◽  
Erika T Machtinger ◽  
...  

Abstract Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and ‘Panola Mountain’ Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


Sign in / Sign up

Export Citation Format

Share Document