Faculty Opinions recommendation of A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor.

Author(s):  
Robert Fecik
2011 ◽  
Vol 108 (38) ◽  
pp. 16020-16025 ◽  
Author(s):  
T. Murakami ◽  
J. Burian ◽  
K. Yanai ◽  
M. J. Bibb ◽  
C. J. Thompson

2019 ◽  
Author(s):  
Snorre Sulheim ◽  
Tjaša Kumelj ◽  
Dino van Dissel ◽  
Ali Salehzadeh-Yazdi ◽  
Chao Du ◽  
...  

AbstractMany biosynthetic gene clusters (BGCs) require heterologous expression to realize their genetic potential, including silent and metagenomic BGCs. Although the engineered Streptomyces coelicolor M1152 is a widely used host for heterologous expression of BGCs, a systemic understanding of how its genetic modifications affect the metabolism is lacking and limiting further development. We performed a comparative analysis of M1152 and its ancestor M145, connecting information from proteomics, transcriptomics, and cultivation data into a comprehensive picture of the metabolic differences between these strains. Instrumental to this comparison was the application of an improved consensus genome-scale metabolic model (GEM) of S. coelicolor. Although many metabolic patterns are retained in M1152, we find that this strain suffers from oxidative stress, possibly caused by increased oxidative metabolism. Furthermore, precursor availability is likely not limiting polyketide production, implying that other strategies could be beneficial for further development of S. coelicolor for heterologous production of novel compounds.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jin Lü ◽  
Qingshan Long ◽  
Zhilong Zhao ◽  
Lu Chen ◽  
Weijun He ◽  
...  

Bacteria of the genus Saccharopolyspora produce important polyketide antibiotics, including erythromycin A (Sac. erythraea) and spinosad (Sac. spinosa). We herein report the development of an industrial erythromycin-producing strain, Sac. erythraea HOE107, into a host for the heterologous expression of polyketide biosynthetic gene clusters (BGCs) from other Saccharopolyspora species and related actinomycetes. To facilitate the integration of natural product BGCs and auxiliary genes beneficial for the production of natural products, the erythromycin polyketide synthase (ery) genes were replaced with two bacterial attB genomic integration sites associated with bacteriophages ϕC31 and ϕBT1. We also established a highly efficient conjugation protocol for the introduction of large bacterial artificial chromosome (BAC) clones into Sac. erythraea strains. Based on this optimized protocol, an arrayed BAC library was effectively transferred into Sac. erythraea. The large spinosad gene cluster from Sac. spinosa and the actinorhodin gene cluster from Streptomyces coelicolor were successfully expressed in the ery deletion mutant. Deletion of the endogenous giant polyketide synthase genes pkeA1-pkeA4, the product of which is not known, and the flaviolin gene cluster (rpp) from the bacterium increased the heterologous production of spinosad and actinorhodin. Furthermore, integration of pJTU6728 carrying additional beneficial genes dramatically improved the yield of actinorhodin in the engineered Sac. erythraea strains. Our study demonstrated that the engineered Sac. erythraea strains SLQ185, LJ161, and LJ162 are good hosts for the expression of heterologous antibiotics and should aid in expression-based genome-mining approaches for the discovery of new and cryptic antibiotics from Streptomyces and rare actinomycetes.


2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Juan Pablo Gomez-Escribano ◽  
Jean Franco Castro ◽  
Valeria Razmilic ◽  
Scott A. Jarmusch ◽  
Gerhard Saalbach ◽  
...  

ABSTRACT Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor. The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides. IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.


2011 ◽  
Vol 27 (20) ◽  
pp. 2905-2906 ◽  
Author(s):  
A. Despalins ◽  
S. Marsit ◽  
J. Oberto

2003 ◽  
Vol 47 (3) ◽  
pp. 869-877 ◽  
Author(s):  
Elisabeth Schmutz ◽  
Agnes Mühlenweg ◽  
Shu-Ming Li ◽  
Lutz Heide

ABSTRACT The aminocoumarin resistance genes of the biosynthetic gene clusters of novobiocin, coumermycin A1, and clorobiocin were investigated. All three clusters contained a gyrBR resistance gene, coding for a gyrase B subunit. Unexpectedly, the clorobiocin and the coumermycin A1 clusters were found to contain an additional, similar gene, named parYR . Its predicted gene product showed sequence similarity with the B subunit of type II topoisomerases. Expression of gyrBR and likewise of parYR in Streptomyces lividans TK24 resulted in resistance against novobiocin and coumermycin A1, suggesting that both gene products are able to function as aminocoumarin-resistant B subunits of gyrase. Southern hybridization experiments showed that the genome of all three antibiotic producers and of Streptomyces coelicolor contained two additional genes which hybridized with either gyrBR or parYR and which may code for aminocoumarin-sensitive GyrB and ParY proteins. Two putative transporter genes, novA and couR5, were found in the novobiocin and the coumermycin A1 cluster, respectively. Expression of these genes in S. lividans TK24 resulted in moderate levels of resistance against novobiocin and coumermycin A1, suggesting that these genes may be involved in antibiotic transport.


Biopolymers ◽  
2010 ◽  
Vol 93 (9) ◽  
pp. 823-832 ◽  
Author(s):  
Katrin Flinspach ◽  
Lucia Westrich ◽  
Leonard Kaysser ◽  
Stefanie Siebenberg ◽  
Juan Pablo Gomez-Escribano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document