scholarly journals Rare earth elements activate the secondary metabolite–biosynthetic gene clusters in Streptomyces coelicolor A3(2)

2010 ◽  
Vol 63 (8) ◽  
pp. 477-481 ◽  
Author(s):  
Yukinori Tanaka ◽  
Takeshi Hosaka ◽  
Kozo Ochi
mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACT Microbes produce a plethora of secondary (or specialized) metabolites that, although not essential for primary metabolism, benefit them to survive in the environment, communicate, and influence cell differentiation. Biosynthetic gene clusters (BGCs), responsible for the production of these secondary metabolites, are readily identifiable on bacterial genome sequences. Understanding the phylogeny and distribution of BGCs helps us to predict the natural product synthesis ability of new isolates. Here, we examined 310 genomes from the Bacillus subtilis group, determined the inter- and intraspecies patterns of absence/presence for all BGCs, and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in the distribution of both known and unknown products. Further, we analyzed variations in the BGC structures of particular families encoding natural products, such as plipastatin, fengycin, iturin, mycosubtilin, and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and a few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Surprisingly, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed genomic analysis of BGCs and the remarkable phylogenetically conserved erosion of secondary metabolite biosynthetic potential in the B. subtilis group. IMPORTANCE Members of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those, the production of antifungals, which makes them promising biocontrol strains. While there are studies examining the distribution of well-known secondary metabolites in Bacilli, intraspecies clade-specific distribution has not been systematically reported for the B. subtilis group. Here, we report the complete biosynthetic potential within the B. subtilis group to explore the distribution of the biosynthetic gene clusters and to reveal an exhaustive phylogenetic conservation of secondary metabolite production within Bacillus that supports the chemodiversity within this species complex. We identify that certain gene clusters acquired deletions of genes and particular frameshift mutations, rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview guides the assignment of the secondary metabolite production potential of newly isolated Bacillus strains based on genome sequence and phylogenetic relatedness.


2016 ◽  
Vol 45 (D1) ◽  
pp. D555-D559 ◽  
Author(s):  
Kai Blin ◽  
Marnix H. Medema ◽  
Renzo Kottmann ◽  
Sang Yup Lee ◽  
Tilmann Weber

Biopolymers ◽  
2010 ◽  
Vol 93 (9) ◽  
pp. 823-832 ◽  
Author(s):  
Katrin Flinspach ◽  
Lucia Westrich ◽  
Leonard Kaysser ◽  
Stefanie Siebenberg ◽  
Juan Pablo Gomez-Escribano ◽  
...  

2012 ◽  
Vol 41 (D1) ◽  
pp. D408-D414 ◽  
Author(s):  
Natsuko Ichikawa ◽  
Machi Sasagawa ◽  
Mika Yamamoto ◽  
Hisayuki Komaki ◽  
Yumi Yoshida ◽  
...  

Author(s):  
Jérôme Collemare ◽  
Michael F Seidl

ABSTRACTFungal secondary metabolites are small molecules that exhibit diverse biological activities exploited in medicine, industry and agriculture. Their biosynthesis is governed by co-expressed genes that often co-localize in gene clusters. Most of these secondary metabolite gene clusters are inactive under laboratory conditions, which is due to a tight transcriptional regulation. Modifications of chromatin, the complex of DNA and histone proteins influencing DNA accessibility, play an important role in this regulation. However, tinkering with well-characterised chemical and genetic modifications that affect chromatin alters the expression of only few biosynthetic gene clusters, and thus the regulation of the vast majority of biosynthetic pathways remains enigmatic. In the past, attempts to activate silent gene clusters in fungi mainly focused on histone acetylation and methylation, while in other eukaryotes many other post-translational modifications are involved in transcription regulation. Thus, how chromatin regulates the expression of gene clusters remains a largely unexplored research field. In this review, we argue that focusing on only few well-characterised chromatin modifications is significantly hampering our understanding of the chromatin-based regulation of biosynthetic gene clusters. Research on underexplored chromatin modifications and on the interplay between different modifications is timely to fully explore the largely untapped reservoir of fungal secondary metabolites.


2020 ◽  
Vol 21 (2) ◽  
pp. 656 ◽  
Author(s):  
Makhosazana Jabulile Khumalo ◽  
Nomfundo Nzuza ◽  
Tiara Padayachee ◽  
Wanping Chen ◽  
Jae-Hyuk Yu ◽  
...  

The prokaryotic phylum Cyanobacteria are some of the oldest known photosynthetic organisms responsible for the oxygenation of the earth. Cyanobacterial species have been recognised as a prosperous source of bioactive secondary metabolites with antibacterial, antiviral, antifungal and/or anticancer activities. Cytochrome P450 monooxygenases (CYPs/P450s) contribute to the production and diversity of various secondary metabolites. To better understand the metabolic potential of cyanobacterial species, we have carried out comprehensive analyses of P450s, predicted secondary metabolite biosynthetic gene clusters (BGCs), and P450s located in secondary metabolite BGCs. Analysis of the genomes of 114 cyanobacterial species identified 341 P450s in 88 species, belonging to 36 families and 79 subfamilies. In total, 770 secondary metabolite BGCs were found in 103 cyanobacterial species. Only 8% of P450s were found to be part of BGCs. Comparative analyses with other bacteria Bacillus, Streptomyces and mycobacterial species have revealed a lower number of P450s and BGCs and a percentage of P450s forming part of BGCs in cyanobacterial species. A mathematical formula presented in this study revealed that cyanobacterial species have the highest gene-cluster diversity percentage compared to Bacillus and mycobacterial species, indicating that these diverse gene clusters are destined to produce different types of secondary metabolites. The study provides fundamental knowledge of P450s and those associated with secondary metabolism in cyanobacterial species, which may illuminate their value for the pharmaceutical and cosmetics industries.


2018 ◽  
Vol 16 (10) ◽  
pp. 1620-1626 ◽  
Author(s):  
Cameron L. M. Gilchrist ◽  
Hang Li ◽  
Yit-Heng Chooi

A perspective on existing and emerging strategies for the prioritisation of secondary metabolite biosynthetic gene clusters (BGCs) to increase the odds of fruitful mining of fungal genomes.


Sign in / Sign up

Export Citation Format

Share Document