Faculty Opinions recommendation of AMPK mediates the initiation of kidney disease induced by a high-fat diet.

Author(s):  
Mai Ots-Rosenberg
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2038-P
Author(s):  
YUKI HIGUCHI ◽  
MICHIHIRO HOSOJIMA ◽  
HIDEYUKI KABASAWA ◽  
SHOJI KUWAHARA ◽  
RYOHEI KASEDA ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 350
Author(s):  
Florian Juszczak ◽  
Maud Vlassembrouck ◽  
Olivia Botton ◽  
Thomas Zwakhals ◽  
Morgane Decarnoncle ◽  
...  

Exercise training is now recognized as an interesting therapeutic strategy in managing obesity and its related disorders. However, there is still a lack of knowledge about its impact on obesity-induced chronic kidney disease (CKD). Here, we investigated the effects of a delayed protocol of endurance exercise training (EET) as well as the underlying mechanism in obese mice presenting CKD. Mice fed a high-fat diet (HFD) or a low-fat diet (LFD) for 12 weeks were subsequently submitted to an 8-weeks EET protocol. Delayed treatment with EET in obese mice prevented body weight gain associated with a reduced calorie intake. EET intervention counteracted obesity-related disorders including glucose intolerance, insulin resistance, dyslipidaemia and hepatic steatosis. Moreover, our data demonstrated for the first time the beneficial effects of EET on obesity-induced CKD as evidenced by an improvement of obesity-related glomerulopathy, tubulo-interstitial fibrosis, inflammation and oxidative stress. EET also prevented renal lipid depositions in the proximal tubule. These results were associated with an improvement of the AMPK pathway by EET in renal tissue. AMPK-mediated phosphorylation of ACC and ULK-1 were particularly enhanced leading to increased fatty acid oxidation and autophagy improvement with EET in obese mice.


2011 ◽  
Vol 22 (10) ◽  
pp. 1846-1855 ◽  
Author(s):  
Anne-Emilie Declèves ◽  
Anna V. Mathew ◽  
Robyn Cunard ◽  
Kumar Sharma

2013 ◽  
Vol 305 (9) ◽  
pp. F1343-F1351 ◽  
Author(s):  
Anne-Emilie Declèves ◽  
Joshua J. Rychak ◽  
Dan J. Smith ◽  
Kumar Sharma

Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.


Life Sciences ◽  
2020 ◽  
Vol 257 ◽  
pp. 118061
Author(s):  
Beatriz M.V. Pereira ◽  
Karina Thieme ◽  
Larissa de Araújo ◽  
Alice C. Rodrigues

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Marwa Matboli ◽  
Sanaa Eissa ◽  
Doaa Ibrahim ◽  
Marwa G. A. Hegazy ◽  
Shalabia S. Imam ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Rabia Mehmood ◽  
Nadeem Sheikh ◽  
Muhammad Babar Khawar ◽  
Muddasir Hassan Abbasi ◽  
Asima Tayyeb ◽  
...  

Excessive consumption of dietary fats leads to the deposition of unnecessary metabolites and multiple organ damage. Lipids, important key regulators of Hedgehog signaling, are involved in triggering fibrotic chronic kidney disease. The present study encompasses the assessment of renal morphofunctional modifications and alteration of lipid metabolism influencing the changes in gene expression of hedgehog signaling pathway genes. Fifteen male Rattus norvegicus of 200 ± 25 grams weight were equally divided into three groups: control (standard rat chow), D-1 (unsaturated high-fat diet) and D-2 (saturated high-fat diet). Animals were provided with respective diets and were followed for 16 weeks. Both HFD-fed groups did not show overall body weight gain as compared to the control. While significant downregulation of hedgehog pathway genes was found in fatty diet groups. In comparison with the control group, Shh, Gli1, Gli2, and Gli3 were downregulated after the consumption of both unsaturated and saturated fatty diets. Ihh and Smo exhibit a similar downregulation in the D-1 group, but an upregulation was detected in the D-2 group. D-2 group also had an increased serum urea concentration as compared to the control ( P = 0.0023 ). Furthermore, renal histopathology revealed tubular necrosis, glomerular edema, glomerular shrinkage, and hypocellularity. Collagen deposition in both HFD groups marks the extent of fibrosis summary figure. Extravagant intake of dietary fats impaired normal kidney functioning and morphofunctionally anomalous kidney triggers on Hh signaling in adult rats. These anomalies can be linked to an escalated risk of chronic kidney disease in adults strongly recommending the reduced uptake of fatty diets to prevent impaired metabolism and renal lipotoxicity.


Sign in / Sign up

Export Citation Format

Share Document