Faculty Opinions recommendation of Specialized face learning is associated with individual recognition in paper wasps.

Author(s):  
Lars Chittka
2021 ◽  
Author(s):  
Floria M.K. Uy ◽  
Christopher M. Jernigan ◽  
Natalie C. Zaba ◽  
Eshan Mehrotra ◽  
Sara E. Miller ◽  
...  

ABSTRACTSocial interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two points, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the central brain. Results demonstrate much stronger transcriptional responses to social interactions in the central brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.


2021 ◽  
Vol 288 (1943) ◽  
pp. 20203010
Author(s):  
Elizabeth A. Tibbetts ◽  
Juanita Pardo-Sanchez ◽  
Julliana Ramirez-Matias ◽  
Aurore Avarguès-Weber

Most recognition is based on identifying features, but specialization for face recognition in primates relies on a different mechanism, termed ‘holistic processing’ where facial features are bound together into a gestalt which is more than the sum of its parts. Here, we test whether individual face recognition in paper wasps also involved holistic processing using a modification of the classic part-whole test in two related paper wasp species: Polistes fuscatus , which use facial patterns to individually identify conspecifics, and Polistes dominula , which lacks individual recognition. We show that P. fuscatus use holistic processing to discriminate between P. fuscatus face images but not P. dominula face images. By contrast, P. dominula do not rely on holistic processing to discriminate between conspecific or heterospecific face images. Therefore, P. fuscatus wasps have evolved holistic face processing, but this ability is highly specific and shaped by species-specific and stimulus-specific selective pressures. Convergence towards holistic face processing in distant taxa (primates, wasps) as well as divergence among closely related taxa with different recognition behaviour ( P. dominula , P. fuscatus ) suggests that holistic processing may be a universal adaptive strategy to facilitate expertise in face recognition.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009474 ◽  
Author(s):  
Floria M. K. Uy ◽  
Christopher M. Jernigan ◽  
Natalie C. Zaba ◽  
Eshan Mehrotra ◽  
Sara E. Miller ◽  
...  

Social interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two times, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the non-visual brain. Results demonstrate much stronger transcriptional responses to social interactions in the non-visual brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes in the non-visual brain, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.


Science ◽  
2011 ◽  
Vol 334 (6060) ◽  
pp. 1272-1275 ◽  
Author(s):  
M. J. Sheehan ◽  
E. A. Tibbetts

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1885
Author(s):  
Qiong Yao ◽  
Dan Song ◽  
Xiang Xu ◽  
Kun Zou

Finger vein (FV) biometrics is one of the most promising individual recognition traits, which has the capabilities of uniqueness, anti-forgery, and bio-assay, etc. However, due to the restricts of imaging environments, the acquired FV images are easily degraded to low-contrast, blur, as well as serious noise disturbance. Therefore, how to extract more efficient and robust features from these low-quality FV images, remains to be addressed. In this paper, a novel feature extraction method of FV images is presented, which combines curvature and radon-like features (RLF). First, an enhanced vein pattern image is obtained by calculating the mean curvature of each pixel in the original FV image. Then, a specific implementation of RLF is developed and performed on the previously obtained vein pattern image, which can effectively aggregate the dispersed spatial information around the vein structures, thus highlight vein patterns and suppress spurious non-boundary responses and noises. Finally, a smoother vein structure image is obtained for subsequent matching and verification. Compared with the existing curvature-based recognition methods, the proposed method can not only preserve the inherent vein patterns, but also eliminate most of the pseudo vein information, so as to restore more smoothing and genuine vein structure information. In order to assess the performance of our proposed RLF-based method, we conducted comprehensive experiments on three public FV databases and a self-built FV database (which contains 37,080 samples that derived from 1030 individuals). The experimental results denoted that RLF-based feature extraction method can obtain more complete and continuous vein patterns, as well as better recognition accuracy.


Sign in / Sign up

Export Citation Format

Share Document