Faculty Opinions recommendation of A lineage of myeloid cells independent of Myb and hematopoietic stem cells.

Author(s):  
Jonathan Kipnis
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4602-4602
Author(s):  
Yuichiro Nakata ◽  
Takeshi Ueda ◽  
Akiko Nagamachi ◽  
Linda Wolff ◽  
Ogawa Seishi ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are disorders originated from hematopoietic stem cells (HSCs), which are characterized by ineffective hematopoiesis, dysplasia mainly in the myeloid lineage, and high progression ratio to acute myeloid leukemia (AML). Recently, we identified mutations of the c-CBL (Casitas B cell lymphoma, a cellular homologue of v-CBL) gene in patients with MDS and myeloproliferative neoplasms (MPN). The mutations are detected in about 8% of the patients with the highest frequency in chronic myelomonocytic leukemia (CMML) cases with acquired uniparental disomy (aUPD) at 11q. c-CBL encodes a RING finger-based E3 ubiquitin ligase that negatively regulates receptor-mediated intracellular signaling. c-CBL is highly expressed in HSCs, strongly suggesting that it functions as a fine regulator of hematopoietic homeostasis. In fact, c-CBL knockout (KO) mice showed a myeloproliferative phenotype, owing to the hyper-responsiveness of HSCs to cytokine stimulation and subsequent augmented hematopoietic progenitor pool. In addition, c-CBL knockin (KI) mice harboring a mutation in the RING finger domain in one allele and a null mutation in the other allele exhibit an MPD-like disease and eventually progress to AML. These findings indicate that dysfunction of c-CBL perturbs normal hematopoietic development and contributes to hematopoietic abnormalities, but the precise leukemogenic mechanism(s) remains elusive. To gain insights into this issue and to create a novel animal model for mutated c-CBL-harboring leukemia, we generated conditional knock-in (cKI) mice that express wild-type c-CBL at steady state and inducibly express c-CBLQ367P, which was identified in patients with chronic myelomonocytic leukemia (CMML). After induced expression of c-CBLQ367P, the cKI mice exhibited a rapid and sustained increase in myelomonocytic cells with dysplasia in the peripheral blood and splenic enlargement with proliferation of myeloid cells, which closely resemble to the phenotype of human CMML. The bone marrow (BM) was hypercellular with predominance of myeloid cells, and increased number of HSC subpopulations and early myeloid progenitors were observed. In addition, phosphorylation of AKT, STAT3 and STAT5 was detected in long-term hematopoietic stem cells (LT-HSCs) of c-CBLQ367P cKI mice, indicating that PI3K/AKT and JAK/STAT signaling pathways are activated in c-CBLQ367P LT-HSCs. Moreover, competitive repopulation assays revealed that mice transplanted with c-CBLQ367P LT-HSCs showed significantly higher donor-derived chimerism than those transplanted with control LT-HSCs and displayed expansion of myelomonocytic cells as observed in c-CBLQ367P cKI mice, indicating that c-CBLQ367P conferred a proliferative advantage to LT-HSCs and that the phenotypes observed in c-CBLQ367P cKI mice were hematopoietic cell-intrinsic. CMML is known to progress to AML, possibly with additional genetic aberrations. To investigate the mechanism(s) underlying the disease evolution, we performed retroviral insertional mutagenesis using MOL4070A, a derivative of Moloney murine leukemia virus capable of inducing myeloid diseases. Almost all MOL4070A-infected c-CBLQ367P cKI mice developed AML, while no disease was observed in virus-injected control mice. Inverse PCR method identified Evi1 gene as a common integration site in the diseased mice and high Evi1 expression was detected in Evi1-integrated tumors. Mice transplanted with Evi1-transduced c-CBLQ367P cKI c-kit-positive BM cells developed AML at a high frequency and in a shortened period as compared to those transplanted with Evi1-transduced control cells. Taken together, we demonstrated that acquired expression of c-CBLQ367P plays a causative role in the development of CMML by activating PI3K/AKT and JAK/STAT pathways in HSCs and found that Evi1 overexpression cooperates with c-CBLQ367P to develop AML. Our mouse model provides a powerful tool for understanding of the pathogenesis of CMML and for developing novel therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Pietro Cacialli ◽  
Marie-Pierre Mailhe ◽  
Rachel Golub ◽  
Julien Y Bertrand

During embryonic development, very few hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium, that will be expanded in a very specific niche. This fetal HSC niche comprises a complex and dynamic molecular network of interactions between multiple cell types, including endothelial cells (ECs) and mesenchymal stromal cells. It is known that functional changes in the hematopoietic niche, such as aging, vascular cell remodelling or inflammation can directly affect HSCs. Among all these inflammatory regulators, the eicosanoid prostaglandin E (PGE2) has been shown to be very important during embryonic life. However, the precise source of PGE2 in the embryo is still elusive. Here we show that all the genes involved in PGE2 synthesis and transport are expressed by distinct cells of the caudal hematopoietic tissue (CHT) in the zebrafish embryo and in the mouse fetal liver, suggesting that each cell type acts sequentially and collaboratively with the others to produce PGE2 and ultimately expand HSCs. Among these cells, we found myeloid cells (both neutrophils and macrophages) to be absolutely necessary, as they concur to the production of PGH2, the precursor of PGE2. To measure the impact of myeloid cells, we generated a genetic model of myeloid ablation, which caused a loss of HSCs in the CHT, that could be rescued by supplementing zebrafish embryos with PGE2 or PGH2. ECs expressed the slco2b1 transporter to import PGH2, and ptges3, the necessary enzyme to convert this latter into PGE2. Taken altogether, our data show that the triad composed of neutrophils, macrophages and ECs concurs to HSC expansion in the CHT.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1720-1725 ◽  
Author(s):  
S Okada ◽  
K Nagayoshi ◽  
H Nakauchi ◽  
S Nishikawa ◽  
Y Miura ◽  
...  

Abstract We confirmed that murine hematopoietic stem cells express the c-kit molecule but not lymphohematopoietic lineage markers. These lineage marker-negative c-kit-positive (Lin- c-kit+) cells were further divided according to the uptake of rhodamine-123 (Rh-123). Approximately 1,000 Lin- c-kit+ rhodamine-123dull cells, which contained 4.0 +/- 1.3 and 12.5 +/- 1.9 day 8 and day 12 spleen colony-forming units (CFU-S), respectively, rescued the 100% of lethally irradiated mice. One third of these cells formed colonies in the presence of interleukin-3 plus erythropoietin. The time course of the hematopoietic reconstitution of this primitive hematopoietic stem cell fraction was investigated by using Ly-5 congenic mice. Although myeloid cells and B lymphocytes were detected in the peripheral blood 2 to 3 weeks after transplantation, T lymphocytes were not detected until 4 weeks after transplantation. It is generally assumed that myeloid cells and B lymphocytes grow in the bone marrow and that T lymphocytes must pass through the thymus. For the first 2 to 3 weeks after transplantation, donor-type T lymphocytes were not dominant in the thymus, and most donor type cells were CD4/CD8 double-negative or double-positive (including CD4low and CD8low). Four weeks after transplantation, donor-type T lymphocytes were dominant and the ratio of CD4/CD8 cells had recovered to the normal pattern. However, significant numbers of T lymphocytes were detected in the peripheral blood at this stage. Sequential analysis of hematopoietic reconstitution from primitive stem cells demonstrates that myeloid and B-lymphoid lineages occurred earlier than that of the T-lymphoid lineages.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi255-vi255
Author(s):  
Mahmoud Alghamri ◽  
Maria Castro ◽  
Pedro Lowenstein ◽  
Neha Kamran ◽  
Padma Kadiyala ◽  
...  

Abstract Gliomas are the most common primary brain tumors; patients exhibit a poor prognosis. Mutations in isocitrate dehydrogenase (mIDH) are present in most patients with lower grade glioma (LGG), and are correlated with better prognosis and survival. We postulated that mIDH1 induces epigenetic reprogramming leading to alteration in immune cells’ function. To examine the role of mIDH1 in the tumor immune microenvironment (TME), we generated LGG glioma models using the sleeping beauty system (Koschmann et al., 2016, Nunez et al., 2019). We show that mIDH1 gliomas exhibit increased levels of CD11b+ Gr1+ myeloid derived suppressor cells in the tumor, BM, circulation and spleen of mice. We found that mIDH1 modifies the cytokines’ repertoire in the glioma microenvironment altering the phenotype and function of the tumor infiltrating CD45+/CD11b+/Gr-1+ myeloid cells, rendering them non-immunosuppressive. Production of these cells results from activation of the granulocytic differentiation program in the BM. This novel mechanism is mediated by tumor-derived granulocyte-colony stimulating factor (G-CSF) which elicits expansion and differentiation of hematopoietic stem cells, skewing hematopoiesis towards the immature myeloid lineage. Moreover, mIDH1 glioma derived G-CSF causes mobilization of hematopoietic stem cells (HSCs) and myeloid progenitors (MPs) from BM to spleen. Blocking G-CSF in mIDH1 bearing mice significantly restored HSCs, and MPs frequencies in the spleen to levels encountered in wtIDH1 glioma. Interestingly, blocking G-CSF restored the inhibitory function of the granulocytic CD11b+ Gr-1+ in mIDH1, and shortened the median survival (MS) of mIDH1 bearing mice to the same MS encountered in wtIDH1 glioma. Our results provide insights into novel epigenetic alterations triggered by mIDH1 which regulate myeloid cells’ heterogeneity and immunosuppression; a feature that can be harnessed to develop novel immunotherapeutic strategies.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1720-1725 ◽  
Author(s):  
S Okada ◽  
K Nagayoshi ◽  
H Nakauchi ◽  
S Nishikawa ◽  
Y Miura ◽  
...  

We confirmed that murine hematopoietic stem cells express the c-kit molecule but not lymphohematopoietic lineage markers. These lineage marker-negative c-kit-positive (Lin- c-kit+) cells were further divided according to the uptake of rhodamine-123 (Rh-123). Approximately 1,000 Lin- c-kit+ rhodamine-123dull cells, which contained 4.0 +/- 1.3 and 12.5 +/- 1.9 day 8 and day 12 spleen colony-forming units (CFU-S), respectively, rescued the 100% of lethally irradiated mice. One third of these cells formed colonies in the presence of interleukin-3 plus erythropoietin. The time course of the hematopoietic reconstitution of this primitive hematopoietic stem cell fraction was investigated by using Ly-5 congenic mice. Although myeloid cells and B lymphocytes were detected in the peripheral blood 2 to 3 weeks after transplantation, T lymphocytes were not detected until 4 weeks after transplantation. It is generally assumed that myeloid cells and B lymphocytes grow in the bone marrow and that T lymphocytes must pass through the thymus. For the first 2 to 3 weeks after transplantation, donor-type T lymphocytes were not dominant in the thymus, and most donor type cells were CD4/CD8 double-negative or double-positive (including CD4low and CD8low). Four weeks after transplantation, donor-type T lymphocytes were dominant and the ratio of CD4/CD8 cells had recovered to the normal pattern. However, significant numbers of T lymphocytes were detected in the peripheral blood at this stage. Sequential analysis of hematopoietic reconstitution from primitive stem cells demonstrates that myeloid and B-lymphoid lineages occurred earlier than that of the T-lymphoid lineages.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 199-199 ◽  
Author(s):  
Marion G. Ott ◽  
Manfred Schmidt ◽  
Stefan Stein ◽  
Kerstin Schwarzwaelder ◽  
Ulrich Siler ◽  
...  

Abstract Gene transfer into hematopoietic stem cells has been successfully used to correct immunodeficiencies affecting the lymphoid compartment. However, similar results have not been reported for diseases affecting myeloid cells, mainly due to low engraftment levels of gene-modified cells observed in unconditioned patients. Here we report on two adult patients (P1 and P2, follow up >24 months) and one child (P3, 6 years, follow up 15 months) who received gene-transduced hematopoietic stem cells in combination with nonmyeloablative bone marrow conditioning for the treatment of X-linked Chronic Granulomatous Disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes. Therapeutically significant gene marking was detected in neutrophils of both adult patients (P1 and P2) leading to large numbers (up to 60%) of functionally corrected phagocytes 24 months after gene therapy. This high correction resulted from an unexpected but temporarily restricted expansion of gene transduced myeloid cells in vivo. In contrast gene marking and functionally reconstitution levels in P3 have been low (1–2%). Both adult patients suffered from active infections prior to gene therapy (P1 of bacterial liver abscesses and P2 of lung aspergillosis) and were free of severe bacterial and fungal infections until 24 months after transplantation. P3 suffered from an Aspergillus infection of the spinal cord with paraparesis before transplantation and recovered after gene therapy despite low numbers of functionally corrected cells in the peripheral blood. Large-scale mapping of retroviral integration site distribution revealed that activating insertions in the zinc finger transcription factor homologs MDS1/EVI1, PRDM16, or in SETBP1 have expanded gene-corrected long term myelopoiesis 3- to 4-fold in both adults, providing direct evidence in humans that these genes may influence regulation of normal long-term hematopoiesis. The hematopoietic repopulation in P1 was polyclonal until 18 months after therapy. P1 died of a severe bacterial sepsis after colon perforation 27 months after gene therapy. No evidence of malignant transformation was found in peripheral blood or bone marrow aspirates from this patient. Gene marking at death was still 60%; however the function of gene transduced cells, the number of corrected cell clones and the activity of a predominant clone was greatly decreased. P2 has been free of infections since transplantation (last monitoring: month 26). Hematopoietic repopulation was polyclonal in P2 until day 560. In conclusion, gene therapy in combination with bone marrow conditioning has provided a transitory therapeutic benefit for all 3 patients. Further improvements in vector design and conditioning regimes are under investigation to provide a stable and long term correction of the disease.


Sign in / Sign up

Export Citation Format

Share Document