Faculty Opinions recommendation of The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells.

Author(s):  
Blesson Chellakkan Selvanesan
2010 ◽  
Vol 70 (3) ◽  
pp. 1184-1194 ◽  
Author(s):  
Eric A. Ariazi ◽  
Eugen Brailoiu ◽  
Smitha Yerrum ◽  
Heather A. Shupp ◽  
Michael J. Slifker ◽  
...  

2010 ◽  
Vol 24 (5) ◽  
pp. 969-980 ◽  
Author(s):  
Yin Li ◽  
Lutz Birnbaumer ◽  
Christina T. Teng

Abstract In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM.


2018 ◽  
Author(s):  
Benedikt Warth ◽  
Amelia Palermo ◽  
Nicholas J.W. Rattray ◽  
Nathan V Lee ◽  
Zhou Zhu ◽  
...  

SummaryPalbociclib, is a selective inhibitor of cyclin-dependent kinases 4 and 6 and used as a first-line treatment for patients with estrogen receptor positive breast cancer. It has been shown that patients have improved progression-free survival when treated in combination with fulvestrant, an estrogen receptor antagonist. However, the mechanisms for this survival advantage are not known. We sought to analyze metabolic and transcriptomic changes in MCF-7 adenocarcinoma breast cancer cells following single and combined treatments to determine if selective metabolic pathways are targeted during combination therapy. Our results showed that individually, the drugs caused metabolic disruption to the same metabolic pathways, however fulvestrant additionally attenuated the pentose phosphate pathway and the production of important coenzymes. A comprehensive effect was observed when the drugs were applied together, confirming the combinatory therapy′s synergism in the cell model. This study highlights the power of merging high-dimensional datasets to unravel mechanisms involved in cancer metabolism and therapy.Highlights○First study employing multi-omics to investigate combined therapy on breast cancer cells○Fulvestrant attenuates the pentose phosphate pathway and coenzyme production○Synergism of palbociclib and fulvestrant was confirmed in vitro○Altered key pathways have been identifiedeTOC BlurbJohnson et al. applied an innovative multi-omics approach to decipher metabolic pathways affected by single versus combination dosing of palbociclib and fulvestrant in estrogen receptor positive breast cancer. Key metabolites and genes were correlated within metabolic pathways and shown to be involved in the drugs′ synergism.


Sign in / Sign up

Export Citation Format

Share Document