Faculty Opinions recommendation of Schistosoma mansoni infection impairs antimalaria treatment and immune responses of rhesus macaques infected with mosquito-borne Plasmodium coatneyi.

Author(s):  
Ian Roberts
2012 ◽  
Vol 80 (11) ◽  
pp. 3821-3827 ◽  
Author(s):  
Amma A. Semenya ◽  
JoAnn S. Sullivan ◽  
John W. Barnwell ◽  
W. Evan Secor

ABSTRACTMalaria and schistosomiasis are the world's two most important parasitic infections in terms of distribution, morbidity, and mortality. In areas wherePlasmodiumandSchistosomaspecies are both endemic, coinfections are commonplace. Mouse models demonstrate that schistosomiasis worsens a malaria infection; however, just as mice and humans differ greatly, the murine-infectingPlasmodiumspecies differ as much from those that infect humans. Research into human coinfections (Schistosoma haematobium-Plasmodium falciparumversusSchistosoma mansoni-P. falciparum) has produced conflicting results. The rhesus macaque model provides a helpful tool for understanding the role ofS. mansonion malaria parasitemia and antimalarial immune responses usingPlasmodium coatneyi, a malaria species that closely resemblesP. falciparuminfection in humans. Eight rhesus macaques were exposed toS. mansonicercariae. Eight weeks later, these animals plus 8 additional macaques were exposed to malaria either through bites of infected mosquitos or intravenous inoculation. When malaria infection was initiated from mosquito bites, coinfected animals displayed increased malaria parasitemia, decreased hematocrit levels, and suppressed malaria-specific antibody responses compared to those of malaria infection alone. However, macaques infected by intravenous inoculation with erythrocytic-stage parasites did not display these same differences in parasitemia, hematocrit, or antibody responses between the two groups. Use of the macaque model provides information that begins to unravel differences in pathological and immunological outcomes observed between humans withP. falciparumthat are coinfected withS. mansoniorS. haematobium. Our results suggest that migration of malaria parasites through livers harboring schistosome eggs may alter host immune responses and infection outcomes.


2014 ◽  
Vol 20 (5) ◽  
pp. 526-530 ◽  
Author(s):  
Vicki Traina-Dorge ◽  
Robert Sanford ◽  
Stephanie James ◽  
Lara A. Doyle-Meyers ◽  
Eileen de Haro ◽  
...  

Parasitology ◽  
2021 ◽  
pp. 1-35
Author(s):  
ED Lombardini ◽  
B Malleret ◽  
A Rungojn ◽  
N Popruk ◽  
T Kaewamatawong ◽  
...  

2008 ◽  
Vol 2 (7) ◽  
pp. e265 ◽  
Author(s):  
Agnès-Laurence Chenine ◽  
Ela Shai-Kobiler ◽  
Lisa N. Steele ◽  
Helena Ong ◽  
Peter Augostini ◽  
...  

2021 ◽  
Author(s):  
Mathew Abraham ◽  
Ashley C. Beavis ◽  
Peng Xiao ◽  
Francois J Villinger ◽  
Zhuo Li ◽  
...  

H5N1, an avian influenza virus, is known to circulate in many Asian countries like Bangladesh, China, Cambodia, Indonesia, and Vietnam. The current FDA-approved H5N1 vaccine has a moderate level of efficacy. A safe and effective vaccine is needed to prevent the outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in humans. Non-segmented negative-sense single-stranded viruses (NNSVs) are widely used as a vector to develop vaccines for humans, animals, and poultry. NNSVs stably express foreign genes without integrating with the host genome. J Paramyxovirus (JPV) is a non-segmented negative-strand RNA virus and a member of the proposed genus Jeilongvirus in the family Paramyxoviridae . JPV-specific antibodies have been detected in rodents, bats, humans, and pigs, but the virus is not associated with disease in any species other than mice. JPV replicates in the respiratory tract of mice and efficiently expresses the virus-vectored foreign genes in tissue culture cells. In this work, we explored JPV as a vector for developing an H5N1 vaccine using intranasal delivery. We incorporated hemagglutinin (HA) of H5N1 into the JPV genome by replacing the small hydrophobic (SH) gene to generate a recombinant JPV expressing HA (rJPV-ΔSH-H5). A single intranasal administration of rJPV-ΔSH-H5 protected mice from a lethal HPAI H5N1 challenge. Intranasal vaccination of rJPV-ΔSH-H5 in rhesus macaques elicited antigen-specific humoral and cell-mediated immune responses. This work demonstrates that JPV is a promising vaccine vector. IMPORTANCE HPAI H5N1 outbreak in Southeast Asia destroyed millions of birds. Transmission of H5N1 into humans resulted in deaths in many countries. In this work, we developed a novel H5N1 vaccine candidate using JPV as a vector and demonstrated that JPV is an efficacious vaccine vector in animals. NNSVs stably express foreign genes without integrating into the host genome. JPV, an NNSV, replicates efficiently in the respiratory tract and induces robust immune responses.


2020 ◽  
Vol 14 (4) ◽  
pp. e0008191
Author(s):  
Michael K. McCracken ◽  
Gregory D. Gromowski ◽  
Lindsey S. Garver ◽  
Brad A. Goupil ◽  
Kathryne D. Walker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document