h5n1 vaccine
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 13)

H-INDEX

32
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2420
Author(s):  
Weiyang Sun ◽  
Zhenfei Wang ◽  
Yue Sun ◽  
Dongxu Li ◽  
Menghan Zhu ◽  
...  

H5N1 influenza virus is a threat to public health worldwide. The virus can cause severe morbidity and mortality in humans. We constructed an H5N1 influenza candidate virus vaccine from the A/chicken/Guizhou/1153/2016 strain that was recommended by the World Health Organization. In this study, we designed an H5N1 chimeric influenza A/B vaccine based on a cold-adapted (ca) influenza B virus B/Vienna/1/99 backbone. We modified the ectodomain of H5N1 hemagglutinin (HA) protein, while retaining the packaging signals of influenza B virus, and then rescued a chimeric cold-adapted H5N1 candidate influenza vaccine through a reverse genetic system. The chimeric H5N1 vaccine replicated well in eggs and the Madin-Darby Canine Kidney cells. It maintained a temperature-sensitive and cold-adapted phenotype. The H5N1 vaccine was attenuated in mice. Hemagglutination inhibition (HAI) antibodies, micro-neutralizing (MN) antibodies, and IgG antibodies were induced in immunized mice, and the mucosal IgA antibody responses were detected in their lung lavage fluids. The IFN-γ-secretion and IL-4-secretion by the mouse splenocytes were induced after stimulation with the specific H5N1 HA protein. The chimeric H5N1 candidate vaccine protected mice against lethal challenge with a wild-type highly pathogenic avian H5N1 influenza virus. The chimeric H5 candidate vaccine is thus a potentially safe, attenuated, and reassortment-incompetent vaccine with circulating A viruses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fan Zhou ◽  
Lena Hansen ◽  
Gabriel Pedersen ◽  
Gunnveig Grødeland ◽  
Rebecca Cox

The highly pathogenic avian influenza H5N1 viruses constantly evolve and give rise to novel variants that have caused widespread zoonotic outbreaks and sporadic human infections. Therefore, vaccines capable of eliciting broadly protective antibody responses are desired and under development. We here investigated the magnitude, kinetics and protective efficacy of the multi-faceted humoral immunity induced by vaccination in healthy adult volunteers with a Matrix M adjuvanted virosomal H5N1 vaccine. Vaccinees were given escalating doses of adjuvanted vaccine (1.5μg, 7.5μg, or 30μg), or a non-adjuvanted vaccine (30μg). An evaluation of sera from vaccinees against pseudotyped viruses covering all (sub)clades isolated from human H5N1 infections demonstrated that the adjuvanted vaccines (7.5μg and 30μg) could elicit rapid and robust increases of broadly cross-neutralizing antibodies against all clades. In addition, the adjuvanted vaccines also induced multifaceted antibody responses including hemagglutinin stalk domain specific, neuraminidase inhibiting, and antibody-dependent cellular cytotoxicity inducing antibodies. The lower adjuvanted dose (1.5µg) showed delayed kinetics, whilst the non-adjuvanted vaccine induced overall lower levels of antibody responses. Importantly, we demonstrate that human sera post vaccination with the adjuvanted (30μg) vaccine provided full protection against a lethal homologous virus challenge in mice. Of note, when combining our data from mice and humans we identified the neutralizing and neuraminidase inhibiting antibody titers as correlates of in vivo protection.


2021 ◽  
Author(s):  
Mathew Abraham ◽  
Ashley C. Beavis ◽  
Peng Xiao ◽  
Francois J Villinger ◽  
Zhuo Li ◽  
...  

H5N1, an avian influenza virus, is known to circulate in many Asian countries like Bangladesh, China, Cambodia, Indonesia, and Vietnam. The current FDA-approved H5N1 vaccine has a moderate level of efficacy. A safe and effective vaccine is needed to prevent the outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in humans. Non-segmented negative-sense single-stranded viruses (NNSVs) are widely used as a vector to develop vaccines for humans, animals, and poultry. NNSVs stably express foreign genes without integrating with the host genome. J Paramyxovirus (JPV) is a non-segmented negative-strand RNA virus and a member of the proposed genus Jeilongvirus in the family Paramyxoviridae . JPV-specific antibodies have been detected in rodents, bats, humans, and pigs, but the virus is not associated with disease in any species other than mice. JPV replicates in the respiratory tract of mice and efficiently expresses the virus-vectored foreign genes in tissue culture cells. In this work, we explored JPV as a vector for developing an H5N1 vaccine using intranasal delivery. We incorporated hemagglutinin (HA) of H5N1 into the JPV genome by replacing the small hydrophobic (SH) gene to generate a recombinant JPV expressing HA (rJPV-ΔSH-H5). A single intranasal administration of rJPV-ΔSH-H5 protected mice from a lethal HPAI H5N1 challenge. Intranasal vaccination of rJPV-ΔSH-H5 in rhesus macaques elicited antigen-specific humoral and cell-mediated immune responses. This work demonstrates that JPV is a promising vaccine vector. IMPORTANCE HPAI H5N1 outbreak in Southeast Asia destroyed millions of birds. Transmission of H5N1 into humans resulted in deaths in many countries. In this work, we developed a novel H5N1 vaccine candidate using JPV as a vector and demonstrated that JPV is an efficacious vaccine vector in animals. NNSVs stably express foreign genes without integrating into the host genome. JPV, an NNSV, replicates efficiently in the respiratory tract and induces robust immune responses.


2021 ◽  
pp. 1677-1681
Author(s):  
Marwa Fathy El Sayed ◽  
Reem A. Soliman ◽  
Heba Mohamed Ghanem ◽  
Marwa M.S. Khedr ◽  
Gina M. Mohamed ◽  
...  

Background and Aim: Avian influenza (AI), which is one of the major respiratory diseases of poultry, and Escherichia coli (E. coli) have caused major economic losses around the world, including in Egypt. Therefore, in this study, we aimed to produce a vaccine from E. coli O157 and AI H5N1 formulated with Montanide ISA70 for the protection of poultry against both diseases. Materials and Methods: We divided one hundred 3-week-old chicks into four groups: Group 1 was vaccinated with prepared inactivated AI H5N1formulated with Montanide ISA70, Group 2 was vaccinated with inactivated E. coli formulated with Montanide ISA70, Group 3 was vaccinated with combined E. coli and AI H5N1 formulated with Montanide ISA70, and Group 4 was an unvaccinated control group. We measured the immune response using the HI (hemagglutination inhibition) test, enzyme-linked immunosorbent assay (ELISA), and the challenge test. Results: We found the three vaccines to be safe and sterile during all periods of examination and observation. The HI test showed that Group 1 exhibited specific antibody titers of 2.3 log2, 4.3 log2, 7.5 log2, 7.8 log2, 8 log2, and 8.1 log2 from week 2 to week 7, respectively, post-vaccination. Group 3 exhibited antibody titers of 3.3 log2, 5.8 log2, 7.8 log2, 8 log2, 8.3 log2, and 8.3 log2 from week 2 to week 7, respectively, post-vaccination. The immune response in both groups reached a high titer at week 6. The combined inactivated E. coli and AI H5N1 vaccine generated a higher immune response than the inactivated AI H5N1 vaccine, and a significant difference exists between the two groups. For Groups 2 and 3, the ELISA antibody titer exhibited its lowest value, 1996.5 and 2036.7, respectively, at week 1 post-vaccination; whereas, both groups exhibited the highest titers, 2227.7 (for Group 2) and 2287.3 (for Group 3), in week 3 post-booster. The ELISA for the combined inactivated E. coli and AI H5N1 vaccine had a higher titer than did the inactivated E. coli vaccine, and a significant difference exists between the two groups. Moreover, the protection rate was higher in Group 3, with 100% for E. coli and 90% for the AI H5N1 vaccine. Conclusion: Our findings demonstrate that producing a combined vaccine using E. coli and AI H5N1 formulated with Montanide ISA70 is recommended for protection against both diseases.


2020 ◽  
Vol 163 ◽  
pp. 1384-1392
Author(s):  
Jin He ◽  
Zhenguang Liu ◽  
Wenming Jiang ◽  
Tianyu Zhu ◽  
Adelijiang Wusiman ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7422
Author(s):  
Nobuko Ohshima ◽  
Yoshitaka Iba ◽  
Ritsuko Kubota-Koketsu ◽  
Ayami Yamasaki ◽  
Keiko Majima ◽  
...  

Four kinds of avian-derived H5N1 influenza virus, A/Vietnam/1194/2004 (Clade 1), A/Indonesia/5/2005 (Clade 2.1), A/Qinghai/1A/2005 (Clade 2.2), and A/Anhui/1/2005 (Clade 2.3), have been stocked in Japan for use as pre-pandemic vaccines. When a pandemic occurs, these viruses would be used as vaccines in the hope of inducing immunity against the pandemic virus. We analyzed the specificity of antibodies (Abs) produced by B lymphocytes present in the blood after immunization with these vaccines. Eighteen volunteers took part in this project. After libraries of Ab-encoding sequences were constructed using blood from subjects vaccinated with these viruses, a large number of clones that encoded Abs that bound to the virus particles used as vaccines were isolated. These clones were classified into two groups according to the hemagglutination inhibition (HI) activity of the encoded Abs. While two-thirds of the clones were HI positive, the encoded Abs exhibited only restricted strain specificity. On the other hand, half of the HI-negative clones encoded Abs that bound not only to the H5N1 virus but also to the H1N1 virus; with a few exceptions, these Abs appeared to be encoded by memory B cells present before vaccination. The HI-negative clones included those encoding broadly cross-reactive Abs, some of which were encoded by non-VH1-69 germline genes. However, although this work shows that various kinds of anti-H5N1 Abs are encoded by volunteers vaccinated with pre-pandemic vaccines, broad cross-reactivity was seen only in a minority of clones, raising concern regarding the utility of these H5N1 vaccine viruses for the prevention of H5N1 pandemics.


2020 ◽  
Vol 92 (17) ◽  
pp. 11879-11887
Author(s):  
Hans C. Cooper ◽  
Yuhong Xie ◽  
Giuseppe Palladino ◽  
John R. Barr ◽  
Ethan C. Settembre ◽  
...  

2019 ◽  
Vol 52 (5) ◽  
pp. 685-692
Author(s):  
Aristine Cheng ◽  
Szu-Min Hsieh ◽  
Sung-Ching Pan ◽  
Yu-Han Li ◽  
Erh-Fang Hsieh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document