scholarly journals Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques

2020 ◽  
Vol 14 (4) ◽  
pp. e0008191
Author(s):  
Michael K. McCracken ◽  
Gregory D. Gromowski ◽  
Lindsey S. Garver ◽  
Brad A. Goupil ◽  
Kathryne D. Walker ◽  
...  
2017 ◽  
Vol 13 (7) ◽  
pp. e1006529 ◽  
Author(s):  
Mauricio A. Martins ◽  
Young C. Shin ◽  
Lucas Gonzalez-Nieto ◽  
Aline Domingues ◽  
Martin J. Gutman ◽  
...  

2008 ◽  
Vol 82 (14) ◽  
pp. 6927-6934 ◽  
Author(s):  
Kanakatte Raviprakash ◽  
Danher Wang ◽  
Dan Ewing ◽  
David H. Holman ◽  
Karla Block ◽  
...  

ABSTRACT Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vector, by incorporating the genes expressing premembrane (prM) and envelope (E) proteins of dengue virus types 1 and 2 (dengue-1 and -2, respectively) (CAdVax-Den12) or dengue-3 and -4 (CAdVax-Den34). Rhesus macaques were vaccinated by intramuscular inoculation of a tetravalent dengue vaccine formulated by combining the two bivalent vaccine constructs. Vaccinated animals produced high-titer antibodies that neutralized all four serotypes of dengue viruses in vitro. The ability of the vaccine to induce rapid, as well as sustained, protective immune responses was examined with two separate live-virus challenges administered at 4 and 24 weeks after the final vaccination. For both of these virus challenge studies, significant protection from viremia was demonstrated for all four dengue virus serotypes in vaccinated animals. Viremia from dengue-1 and dengue-3 challenges was completely blocked, whereas viremia from dengue-2 and dengue-4 was significantly reduced, as well as delayed, compared to that of control-vaccinated animals. These results demonstrate that the tetravalent dengue vaccine formulation provides significant protection in rhesus macaques against challenge with all four dengue virus serotypes.


Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1659-1667 ◽  
Author(s):  
Kanakatte Raviprakash ◽  
Kevin R. Porter ◽  
Tadeuscz J. Kochel ◽  
Daniel Ewing ◽  
Monica Simmons ◽  
...  

A candidate DNA vaccine expressing dengue virus type 1 pre-membrane and envelope proteins was used to immunize rhesus macaques. Monkeys were immunized intramuscularly (i.m.) or intradermally (i.d.) by three or four 1 mg doses of vaccine, respectively. Monkeys that were inoculated i.m. seroconverted more quickly and had higher antibody levels than those that were inoculated i.d. The sera exhibited virus-neutralizing activity, which declined over time. Four of the eight i.m.-inoculated monkeys were protected completely from developing viraemia when challenged 4 months after the last dose with homologous dengue virus. The other four monkeys had reduced viraemia compared with the control immunized monkeys. The i.d.-inoculated monkeys showed no reduction in viraemia when challenged with the virus. All vaccinated monkeys showed an anamnestic antibody response, indicating that they had established immunological memory. Vaccine-induced antibody had an avidity index similar to that of antibody induced by virus infection; however, no clear correlation was apparent between antibody avidity and virus neutralization titres.


2011 ◽  
Vol 11 (7) ◽  
pp. 1664-1673 ◽  
Author(s):  
Pornapat Surasombatpattana ◽  
Rodolphe Hamel ◽  
Sirilaksana Patramool ◽  
Natthanej Luplertlop ◽  
Frédéric Thomas ◽  
...  

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Tiffany Russell ◽  
Louisa Wallace ◽  
Kevin Maringer

The flavivirus dengue virus (DENV) is the most significant arthropod borne virus (arbovirus) of humans, causing serious morbidity and mortality, with nearly half of the world’s population at risk of infection. Due to a lack of antivirals and limited vaccine options, vector control remains a vital defence against dengue disease. The mosquito Aedes aegypti is the major vector for DENV, and understanding mosquito immune responses and how DENV may evade them is critical. We have shown that DENV-2 can inhibit the exogenous induction of immune deficiency (IMD) signalling by classical immune stimuli. Therefore, we aimed to identify DENV antagonists of the IMD pathway, and define the molecular virus and host determinants of IMD antagonism in a well characterised Ae. aegypti derived cell line, Aag2. Each DENV protein was expressed individually in Aag2 cells and tested for their ability to block IMD signalling induced by exogenous stimuli. This screen identified NS4A as a potential antagonist of the IMD pathway. Further, we have found that the N-terminus of NS4A is responsible for this inhibition. The antagonism of IMD signalling is specific to flaviviruses transmitted by a mosquito vector, illustrating the importance of both the IMD pathway for mosquito immunity and the antagonism of this pathway by DENV. By enhancing our understanding of how DENV evades the mosquito immune response at a molecular level, we will gain insight into virus-host interactions constraining arbovirus transmission and emergence, which may be exploited for developing transmission-incompetent vectors to reduce the burden of dengue disease.


Sign in / Sign up

Export Citation Format

Share Document