Faculty Opinions recommendation of In Vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling.

Author(s):  
Pengbo Zhou ◽  
Jeffrey Hannah
Cancer Cell ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Peter G. Miller ◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P. Chu ◽  
Marcus Järås ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


2013 ◽  
Author(s):  
Silvia Fenoglio ◽  
Yadira Soto-Feliciano ◽  
Gregory Hannon ◽  
Michael Hemann

Cell Reports ◽  
2015 ◽  
Vol 11 (11) ◽  
pp. 1714-1726 ◽  
Author(s):  
Asiel A. Benitez ◽  
Maryline Panis ◽  
Jia Xue ◽  
Andrew Varble ◽  
Jaehee V. Shim ◽  
...  

2011 ◽  
Vol 54 ◽  
pp. S86-S87
Author(s):  
D. Dauch ◽  
T. Wüstefeld ◽  
T.-W. Kang ◽  
A. Hohmeyer ◽  
R. Rudalska ◽  
...  
Keyword(s):  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
A Hohmeyer ◽  
D Dauch ◽  
TW Kang ◽  
T Longerich ◽  
P Schirmacher ◽  
...  

2013 ◽  
Vol 51 (01) ◽  
Author(s):  
T Wuestefeld ◽  
M Pesic ◽  
T Longerich ◽  
TW Kang ◽  
T Yevsa ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1257-1257
Author(s):  
Stephanie Lettermann ◽  
Konstantin Agelopoulos ◽  
Christian Rohde ◽  
Beate Lindtner ◽  
Linda Marek ◽  
...  

Abstract The majority of AML patients still relapse, despite intensive chemotherapy. A subset of more chemoresistant leukemia cells might be responsible for this phenomenon. These relapse-initiating cells might differ epigenetically from the more chemosensitive leukemia bulk. Since interaction of leukemic cells with the niche might contribute to chemoresistance, we decided to perform an in vivo RNAi screen for modulators of chemoresistance. We constructed a focussed shRNA library with ∼400 constructs that target 142 genes involved in stem cell functions, leukemogenesis and epigenetic regulation. Myc/Bcl2 induced murine leukemias were retrovirally transduced and injected into sublethally irradiated syngeneic mice. Mice (n=24) were either treated with Cytarabine, Azacytidine, Decitabine, or vehicle. Upon signs of leukemia, DNA was extracted and the shRNA pool was PCR-amplified from bone marrow, spleen and liver of each individual mouse. Overall, 61 libraries were sequenced with more than 500-fold coverage of each construct. Suppression of HDAC4, Pik3r1, Atr, Ccna2 and HDAC1 significantly enhanced sensitivity towards Cytarabine treatment. Histone deacetylase 4 (HDAC4) was identified as a top candidate since it enhanced the efficacy of all three drugs. It was depleted more than sixteen-fold upon Cytarabine treatment. HDAC4 suppression by the specific shRNAs was confirmed by real-time RT-PCR and western blot analysis. In a competitive re-transplantation assay in vivo, HDAC4 suppression inhibited leukemic growth. Further, we analyzed inhibition of HDAC4 by LMK235, a novel and specific inhibitor of HDAC4 and 5 in human HL60 leukemia cells. Synergistic inhibition was demonstrated for LMK235 and Cytarabine in proliferation assays and in colony formation assays. These findings demonstrate that in vivo RNAi screening for therapeutic efficacy is feasible. HDAC4 might be an important target to enhance efficacy of anti-leukemic drugs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document