shrna screen
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jeannine Diesch ◽  
Marguerite-Marie Le Pannérer ◽  
René Winkler ◽  
Raquel Casquero ◽  
Matthias Muhar ◽  
...  

AbstractThe nucleotide analogue azacitidine (AZA) is currently the best treatment option for patients with high-risk myelodysplastic syndromes (MDS). However, only half of treated patients respond and of these almost all eventually relapse. New treatment options are urgently needed to improve the clinical management of these patients. Here, we perform a loss-of-function shRNA screen and identify the histone acetyl transferase and transcriptional co-activator, CREB binding protein (CBP), as a major regulator of AZA sensitivity. Compounds inhibiting the activity of CBP and the closely related p300 synergistically reduce viability of MDS-derived AML cell lines when combined with AZA. Importantly, this effect is specific for the RNA-dependent functions of AZA and not observed with the related compound decitabine that is only incorporated into DNA. The identification of immediate target genes leads us to the unexpected finding that the effect of CBP/p300 inhibition is mediated by globally down regulating protein synthesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabian Frontzek ◽  
Annette M. Staiger ◽  
Myroslav Zapukhlyak ◽  
Wendan Xu ◽  
Irina Bonzheim ◽  
...  

AbstractPlasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients.


2021 ◽  
Author(s):  
Mohammad Sultan ◽  
Jacob T Nearing ◽  
Justin M Brown ◽  
Thomas T Huynh ◽  
Brianne M Cruickshank ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stijn Moens ◽  
Peihua Zhao ◽  
Maria Francesca Baietti ◽  
Oliviero Marinelli ◽  
Delphi Van Haver ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, lacking effective therapy. Many TNBCs show remarkable response to carboplatin-based chemotherapy, but often develop resistance over time. With increasing use of carboplatin in the clinic, there is a pressing need to identify vulnerabilities of carboplatin-resistant tumors. In this study, we generated carboplatin-resistant TNBC MDA-MB-468 cell line and patient derived TNBC xenograft models. Mass spectrometry-based proteome profiling demonstrated that carboplatin resistance in TNBC is linked to drastic metabolism rewiring and upregulation of anti-oxidative response that supports cell replication by maintaining low levels of DNA damage in the presence of carboplatin. Carboplatin-resistant cells also exhibited dysregulation of the mitotic checkpoint. A kinome shRNA screen revealed that carboplatin-resistant cells are vulnerable to the depletion of the mitotic checkpoint regulators, whereas the checkpoint kinases CHEK1 and WEE1 are indispensable for the survival of carboplatin-resistant cells in the presence of carboplatin. We confirmed that pharmacological inhibition of CHEK1 by prexasertib in the presence of carboplatin is well tolerated by mice and suppresses the growth of carboplatin-resistant TNBC xenografts. Thus, abrogation of the mitotic checkpoint by CHEK1 inhibition re-sensitizes carboplatin-resistant TNBCs to carboplatin and represents a potential strategy for the treatment of carboplatin-resistant TNBCs.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-29
Author(s):  
Anna Wojcicki ◽  
Hee-Don Chae ◽  
Kyuho Han ◽  
Minyoung Youn ◽  
Mark C Wilkes ◽  
...  

Introduction Acute myeloid leukemia (AML) is a malignancy of myeloid progenitor cells that leads to the accumulation of immature blasts in the blood and bone marrow. While the 5-year relative survival rate has increased from 6.4% to 28.7% in the last 40 years, death rates have remained steady at 3-4%. Less toxic, more effective targeted treatments are needed to improve outcomes for patients with AML. Previous studies identified cAMP response element-binding protein (CREB) as a potential therapeutic target for AML therapy. CREB is overexpressed in AML and is associated with poor prognosis. We identified a small molecule, XX-650-23, that inhibits interaction between CREB and its co-activator, CREB Binding Protein. However, XX-650-23 does not have optimal physical chemical properties for clinical application in humans. Niclosamide, an FDA approved anthelmintic drug, shares structural similarity with XX-650-23, and suppresses the proliferation of AML cells in vitro and in vivo by inhibiting CREB-dependent signaling. The aim of this study is to define the molecular pathways that mediate the effects of niclosamide in AML cells. This will allow for more precise selection of patient populations for treatment, identify potential sources of niclosamide resistance and reveal combination therapies that make use of the distinct pathways targeted. Methods To identify genetic factors modulating cellular sensitivity to niclosamide treatment, we performed a CRISPR/Cas9 library screen in the presence or absence of niclosamide. HL60 cells expressing Cas9 were infected with a custom sgRNA lentivirus library of 220 genes from a previous genome-wide shRNA screen. After puromycin selection, HL60 cells expressing pooled sgRNAs were grown in either niclosamide or 0.1% DMSO for 20 days. Genomic DNA was extracted from control and niclosamide-treated cells. Frequency of sgRNA were measured by next generation sequencing and analyzed using the Cas9 high-throughput maximum likelihood estimator (casTLE) algorithm. Results Sixty-five gene hits were found to be significant (p≤0.05). Of the top 220 hits from the previous genome-wide shRNA screen, 26 were identified as positive hits (p ≤0.05) in the CRISPR/Cas9 knock out screen. The CRISPR screen identified genes enriched in a number of pathways including programmed cell death, nucleotide biosynthesis, mitochondrial processes and canonical glycolysis, as measured by gene ontology term analysis. Numerous gene deletions conferred resistance to niclosamide treatment. Genes DHODH (score= 123; effect= 2.9) and HSPA9 (score= 144; effect = 2.5), involved in nucleotide biosynthesis and mitochondrial processes, were significantly enriched in the surviving population. Perturbation of known metabolic pathways sensitized AML cells to niclosamide, including ATP synthase F1 subunit beta (ATP5B) (score= 316; effect= -5.1), hexokinase 2 (HK2) (score= 312; effect= -5.4), phosphofructokinase (PFKP) (score= 195; effect= -1.9) and mitochondrial phosphate carrier protein (SLC25A3) (score= 271; effect= -7.8). SLC25A3 and ATP5B play a role in oxidative phosphorylation and mitochondrial proton transmembrane transport, whereas HK2 and PFKP are key to glycolysis, suggesting that niclosamide's mechanism of action is dependent on energy metabolism. Furthermore, we found that disruption of Bcl-2 (BCL2) was sensitizing to niclosamide treatment (score= 129; effect= -4.7). To confirm the sensitizing effect of Bcl-2 inhibition on niclosamide treatment, HL60 cells were treated with niclosamide and Bc1-2 inhibitor venetoclax. Pretreatment of HL60 cells with niclosamide led to significantly decreased cell viability upon venetoclax treatment (p<0.0001). Simultaneous treatment of HL60 cells with niclosamide and venetoclax had a synergistic effect on cellular viability, with combination index values <1 at ED50 to ED90 (Chou-Talalay method). Overall, our study identified genes with strong signatures for cell death, nucleotide biosynthesis, mitochondrial function and metabolic processes. Compounds inhibiting genes identified in this screen could be combined with niclosamide for synergistic effect. Targets overrepresented in the surviving population represent sources of resistance to niclosamide therapy. This study provides insight into mechanisms of action and resistance in AML cells treated with niclosamide and novel targets for combination therapy. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Niclosamide is an anthelmintic, FDA approved to treat tapeworm infections.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Virtu Solano-Collado ◽  
Massimiliano Baldassarre ◽  
Stefania SpanÒ

Salmonella enterica serovar Typhi (S. Typhi) is a human adapted pathogen and the causative agent of typhoid fever, a life-threatening infection that kills hundred of thousand people every year, being particularly devastating in developing countries. S. Typhi host-restriction is partly due to the Rab32-dependent antimicrobial pathway, which is crucial to prevent the growth of S. Typhi in mouse macrophages. However, the exact mechanisms used by macrophages to kill S. Typhias well as the molecular basis of these mechanisms in the adaptation to the human host are unknown. In order to identify host genes required to kill S. Typhi, we have performed a targeted short-hairpin RNA (shRNA) screen in primary mouse macrophages, aiming to i) optimize the conditions to perform silencing screenings in primary mouse macrophages and ii) identify novel Rab GTPases involved in S. Typhi host-restriction. For this, pooled shRNAs are used to knockdown gene expression in macrophages using lentiviral-based transduction system. After infection with a fluorescently-labelled S. Typhi strain, macrophages containing different numbers of intracellular bacteria are sorted by flow cytometry and targeted genes identified by next-generation sequencing. This small-scale screen allowed us to optimize the screening conditions to perform genome-wide screenings in primary macrophages. More importantly, we have identified other Rab GTPases required in mouse macrophages to control S. Typhi survival confirming that this approach can be used to identify genes that macrophages use to control S. Typhi infection and extending our knowledge of the immunity mechanisms controlling the growth of intracellular pathogens.


2020 ◽  
Vol 80 (16) ◽  
pp. 3305-3318
Author(s):  
Zhaojun Qiu ◽  
Pengyan Fa ◽  
Tao Liu ◽  
Chandra B. Prasad ◽  
Shanhuai Ma ◽  
...  

2020 ◽  
Author(s):  
Nathan A. Dahl ◽  
Etienne Danis ◽  
Ilango Balakrishnan ◽  
Dong Wang ◽  
Angela Pierce ◽  
...  

AbstractMutations in the histone 3 gene (H3K27M) are the eponymous drivers in diffuse intrinsic pontine gliomas (DIPGs) and other diffuse midline gliomas (DMGs), aggressive pediatric brain cancers for which no curative therapy currently exists. The salient molecular consequence of these recurrent oncohistones is a global loss of repressive H3K27me3 residues and broad epigenetic dysregulation. In order to identify specific, therapeutically targetable epigenetic dependencies within this disease context, we performed an shRNA screen targeting 408 genes classified as epigenetic/chromatin-associated molecules in patient-derived DMG cultures. This approach identified AFF4, the scaffold protein of the super elongation complex (SEC), as a previously-undescribed dependency in DMG. Interrogation of SEC function demonstrated a key role for maintaining DMG cell viability and clonogenic potential while promoting self-renewal of DMG tumor stem cells. Small-molecule inhibition of the SEC with the highly-specific, clinically relevant CDK9 inhibitors atuveciclib and AZD4573 restores regulatory RNA polymerase II pausing, promotes cellular differentiation, and leads to potent anti-tumor effect both in vitro and in patient-derived xenograft models. These studies present a biologic rationale for translational exploration of CDK9 inhibition as a promising therapeutic approach in a disease which currently has no effective medical therapies.


Oncogene ◽  
2019 ◽  
Vol 39 (10) ◽  
pp. 2187-2201 ◽  
Author(s):  
Hilal Saraç ◽  
Tunç Morova ◽  
Elisabete Pires ◽  
James McCullagh ◽  
Anıl Kaplan ◽  
...  

AbstractAndrogen deprivation therapy (ADT) is the standard care for prostate cancer (PCa) patients who fail surgery or radiotherapy. While initially effective, the cancer almost always recurs as a more aggressive castration resistant prostate cancer (CRPC). Previous studies have demonstrated that chromatin modifying enzymes can play a critical role in the conversion to CRPC. However, only a handful of these potential pharmacological targets have been tested. Therefore, in this study, we conducted a focused shRNA screen of chromatin modifying enzymes previously shown to be involved in cellular differentiation. We found that altering the balance between histone methylation and demethylation impacted growth and proliferation. Of all genes tested, KDM3B, a histone H3K9 demethylase, was found to have the most antiproliferative effect. These results were phenocopied with a KDM3B CRISPR/Cas9 knockout. When tested in several PCa cell lines, the decrease in proliferation was remarkably specific to androgen-independent cells. Genetic rescue experiments showed that only the enzymatically active KDM3B could recover the phenotype. Surprisingly, despite the decreased proliferation of androgen-independent cell no alterations in the cell cycle distribution were observed following KDM3B knockdown. Whole transcriptome analyses revealed changes in the gene expression profile following loss of KDM3B, including downregulation of metabolic enzymes such as ARG2 and RDH11. Metabolomic analysis of KDM3B knockout showed a decrease in several critical amino acids. Overall, our work reveals, for the first time, the specificity and the dependence of KDM3B in CRPC proliferation.


Sign in / Sign up

Export Citation Format

Share Document