Faculty Opinions recommendation of Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.

Author(s):  
Virginia L Miller
2009 ◽  
Vol 53 (12) ◽  
pp. 5046-5054 ◽  
Author(s):  
Dongeun Yong ◽  
Mark A. Toleman ◽  
Christian G. Giske ◽  
Hyun S. Cho ◽  
Kristina Sundman ◽  
...  

ABSTRACT A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex. The isolate, Klebsiella pneumoniae 05-506, was shown to possess a metallo-β-lactamase (MBL) but was negative for previously known MBL genes. Gene libraries and amplification of class 1 integrons revealed three resistance-conferring regions; the first contained bla CMY-4 flanked by ISEcP1 and blc. The second region of 4.8 kb contained a complex class 1 integron with the gene cassettes arr-2, a new erythromycin esterase gene; ereC; aadA1; and cmlA7. An intact ISCR1 element was shown to be downstream from the qac/sul genes. The third region consisted of a new MBL gene, designated bla NDM-1, flanked on one side by K. pneumoniae DNA and a truncated IS26 element on its other side. The last two regions lie adjacent to one another, and all three regions are found on a 180-kb region that is easily transferable to recipient strains and that confers resistance to all antibiotics except fluoroquinolones and colistin. NDM-1 shares very little identity with other MBLs, with the most similar MBLs being VIM-1/VIM-2, with which it has only 32.4% identity. As well as possessing unique residues near the active site, NDM-1 also has an additional insert between positions 162 and 166 not present in other MBLs. NDM-1 has a molecular mass of 28 kDa, is monomeric, and can hydrolyze all β-lactams except aztreonam. Compared to VIM-2, NDM-1 displays tighter binding to most cephalosporins, in particular, cefuroxime, cefotaxime, and cephalothin (cefalotin), and also to the penicillins. NDM-1 does not bind to the carbapenems as tightly as IMP-1 or VIM-2 and turns over the carbapenems at a rate similar to that of VIM-2. In addition to K. pneumoniae 05-506, bla NDM-1 was found on a 140-kb plasmid in an Escherichia coli strain isolated from the patient's feces, inferring the possibility of in vivo conjugation. The broad resistance carried on these plasmids is a further worrying development for India, which already has high levels of antibiotic resistance.


1996 ◽  
Vol 40 (7) ◽  
pp. 1736-1740 ◽  
Author(s):  
M Gazouli ◽  
L S Tzouvelekis ◽  
E Prinarakis ◽  
V Miriagou ◽  
E Tzelepi

Cefoxitin resistance in Klebsiella pneumoniae from Escherichia coli strains isolated in Greek hospitals was found to be due to the acquisition of similar plasmids coding for group 1 beta-lactamases. The plasmids were not self-transferable but were mobilized by conjugative plasmids. These elements have also been spread to Enterobacter aerogenes. The most common enzyme was a Citrobacter freundii-derived cephalosporinase (LAT-2) which differed from LAT-1 by three amino acids.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun Li ◽  
Zi-Yan Huang ◽  
Ting Yu ◽  
Xiao-Yan Tao ◽  
Yong-Mei Hu ◽  
...  

Abstract Background The molecular characterization of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) isolates is not well studied. Our goal was to investigate the molecular epidemiology of CR-hvKP strains that were isolated from a Chinese hospital. Results All clinical carbapenem-resistant K. pneumoniae (CR-KP) isolates were collected and identified from patient samples between 2014 and 2017 from a Chinese hospital. The samples were subjected to screening for CR-hvKP by string test and the detection of the aerobactin gene. CR-hvKP isolates were further confirmed through neutrophil phagocytosis and a mice lethality assay. The CR-hvKP isolates were investigated for their capsular genotyping, virulence gene profiles, and the expression of carbapenemase genes by PCR and DNA sequencing. Multilocus sequence type (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to exclude the homology of these isolates. Twenty strains were identified as CR-hvKP. These strains were resistant to imipenem and several other antibiotics, however, most were susceptible to amikacin. Notably, two isolates were not susceptible to tigecycline. Capsular polysaccharide synthesis genotyping revealed that 17 of the 20 CR-hvKP strains belonged to the K2 serotype, while the others belonged to serotypes other than K1, K2, K5, K20, and K57. The strains were found to be positive for 10 types of virulence genes and a variety of these genes coexisted in the same strain. Two carbapenemase genes were identified: blaKPC-2 (13/20) and blaNDM-1 (1/20). PFGE typing revealed eight clusters comprising isolates that belonged to MLST types ST25, ST11 and ST375, respectively. PFGE cluster A was identified as the main cluster, which included 11 isolates that belong to ST25 and mainly from ICU department. Conclusions Our findings suggest that hospital-acquired infections may contribute in part to the CR-hvKP strains identified in this study. It also suggests that ST25 CR-hvKP strain has a clonal distribution in our hospital. Therefore, effective surveillance and strict infection control strategies should be implemented to prevent outbreak by CR-hvKP strains in hospitals setting.


2011 ◽  
Vol 56 (2) ◽  
pp. 1042-1046 ◽  
Author(s):  
Vera Manageiro ◽  
Eugénia Ferreira ◽  
Antony Cougnoux ◽  
Luís Albuquerque ◽  
Manuela Caniça ◽  
...  

ABSTRACTThe clinicalKlebsiella pneumoniaeINSRA6884 strain exhibited nonsusceptibility to all penicillins tested (MICs of 64 to >2,048 μg/ml). The MICs of penicillins were weakly reduced by clavulanate (from 2,048 to 512 μg/ml), and tazobactam restored piperacillin susceptibility. Molecular characterization identified the genesblaGES-7and a new β-lactamase gene,blaSHV-107, which encoded an enzyme that differed from SHV-1 by the amino acid substitutions Leu35Gln and Thr235Ala. The SHV-107-producingEscherichia colistrain exhibited only a β-lactam resistance phenotype with respect to amoxicillin, ticarcillin, and amoxicillin-clavulanate combination. The kinetic parameters of the purified SHV-107 enzyme revealed a high affinity for penicillins. However, catalytic efficiency for these antibiotics was lower for SHV-107 than for SHV-1. No hydrolysis was detected against oxyimino-β-lactams. The 50% inhibitory concentration (IC50) for clavulanic acid was 9-fold higher for SHV-107 than for SHV-1, but the inhibitory effects of tazobactam were unchanged. Molecular dynamics simulation suggested that the Thr235Ala substitution affects the accommodation of clavulanate in the binding site and therefore its inhibitory activity.


2002 ◽  
Vol 21 (3) ◽  
pp. 260-262 ◽  
Author(s):  
Toshiya Ohkawa ◽  
Masao Yoshinaga ◽  
Naoaki Ikarimoto ◽  
Hiroaki Miyanohara ◽  
Koichiro Miyata ◽  
...  

2012 ◽  
Vol 6 (05) ◽  
pp. 457-461 ◽  
Author(s):  
Rima I El-Herte ◽  
George F Araj ◽  
Ghassan M Matar ◽  
Maysa Baroud ◽  
Zeina A Kanafani ◽  
...  

Carbapenem resistance has been encountered globally with poor outcome of infected patients. NDM-1 (New Delhi metallo-beta-lactamase) gene containing organisms have emerged and are now spreading in all continents. This is the first report of Iraqi patients referred to Lebanon from whom carbapenem resistant Enterobacteriaceae were recovered. The genes involved in carbapenem resistance were bla-OXA-48   and the novel NDM-1. This report highlights the alarming introduction of such resistance among Enterobacteriaecae to this country.


Sign in / Sign up

Export Citation Format

Share Document