scholarly journals Characterization of the Inhibitor-Resistant SHV β-Lactamase SHV-107 in a Clinical Klebsiella pneumoniae Strain Coproducing GES-7 Enzyme

2011 ◽  
Vol 56 (2) ◽  
pp. 1042-1046 ◽  
Author(s):  
Vera Manageiro ◽  
Eugénia Ferreira ◽  
Antony Cougnoux ◽  
Luís Albuquerque ◽  
Manuela Caniça ◽  
...  

ABSTRACTThe clinicalKlebsiella pneumoniaeINSRA6884 strain exhibited nonsusceptibility to all penicillins tested (MICs of 64 to >2,048 μg/ml). The MICs of penicillins were weakly reduced by clavulanate (from 2,048 to 512 μg/ml), and tazobactam restored piperacillin susceptibility. Molecular characterization identified the genesblaGES-7and a new β-lactamase gene,blaSHV-107, which encoded an enzyme that differed from SHV-1 by the amino acid substitutions Leu35Gln and Thr235Ala. The SHV-107-producingEscherichia colistrain exhibited only a β-lactam resistance phenotype with respect to amoxicillin, ticarcillin, and amoxicillin-clavulanate combination. The kinetic parameters of the purified SHV-107 enzyme revealed a high affinity for penicillins. However, catalytic efficiency for these antibiotics was lower for SHV-107 than for SHV-1. No hydrolysis was detected against oxyimino-β-lactams. The 50% inhibitory concentration (IC50) for clavulanic acid was 9-fold higher for SHV-107 than for SHV-1, but the inhibitory effects of tazobactam were unchanged. Molecular dynamics simulation suggested that the Thr235Ala substitution affects the accommodation of clavulanate in the binding site and therefore its inhibitory activity.

2012 ◽  
Vol 56 (8) ◽  
pp. 4450-4458 ◽  
Author(s):  
Mark Veleba ◽  
Paul G. Higgins ◽  
Gerardo Gonzalez ◽  
Harald Seifert ◽  
Thamarai Schneiders

ABSTRACTTranscriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes.Klebsiella pneumoniaeis a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription oframAis associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466–4467, 2012). Bioinformatic analyses of the availableKlebsiellagenome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded inK. pneumoniae,Enterobactersp. 638,Serratia proteamaculans568, andEnterobacter cloacae. We show that the overexpression ofrarAresults in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show thatrarA(MGH 78578 KPN_02968) and its neighboring efflux pump operonoqxAB(KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest thatrarAoverexpression upregulates theoqxABefflux pump. Additionally, it appears thatoqxR, encoding a GntR-type regulator adjacent to theoqxABoperon, is able to downregulate the expression of theoqxABefflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.


2015 ◽  
Vol 59 (3) ◽  
pp. 1818-1821 ◽  
Author(s):  
Luicer A. Ingasia ◽  
Hoseah M. Akala ◽  
Mabel O. Imbuga ◽  
Benjamin H. Opot ◽  
Fredrick L. Eyase ◽  
...  

ABSTRACTThe prevalence of a genetic polymorphism(s) at codon 268 in the cytochromebgene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227Plasmodium falciparumparasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1287
Author(s):  
Zhiwei Yi ◽  
Zhengwen Cai ◽  
Bo Zeng ◽  
Runying Zeng ◽  
Guangya Zhang

β-1,3 xylanase is an important enzyme in the biorefinery process for some algae. The discovery and characterization of new β-1,3 xylanase is a hot research topic. In this paper, a novel β-1,3 xylanase (Xyl88) is revealed from the annotated genome of Flammeovirga pacifica strain WPAGA1. Bioinformatic analysis shows that Xyl88 belongs to the glycoside hydrolase 26 (GH26) with a suspected CBM (carbohydrate-binding module) sequence. The activity of rXyl88 is 75% of the highest enzyme activity (1.5 mol/L NaCl) in 3 mol/L NaCl buffer, which suggests good salt tolerance of rXy188. The optimum reaction temperature in the buffer without NaCl and with 1.5 mol/L NaCl is 45 °C and 55 °C, respectively. Notably, the catalytic efficiency of rXyl88 (kcat/Km) is approximately 20 higher than that of the thermophilic β-1,3 xylanase that has the highest catalytic efficiency. Xyl88 in this study becomes the most efficient enzyme ever found, and it is also the first reported moderately thermophilic and salt-tolerant β-1,3 xylanase. Results of molecular dynamics simulation further prove the excellent thermal stability of Xyl88. Moreover, according to the predicted 3D structure of the Xyl88, the surface of the enzyme is distributed with more negative charges, which is related to its salt tolerance, and significantly more hydrogen bonds and Van der Waals force between the intramolecular residues, which is related to its thermal stability.


2019 ◽  
Vol 201 (16) ◽  
Author(s):  
Georg Schmitt ◽  
Martin Saft ◽  
Fabian Arndt ◽  
Jörg Kahnt ◽  
Johann Heider

ABSTRACTAromatic amines like 2-phenylethylamine (2-PEA) and benzylamine (BAm) have been identified as novel growth substrates of the betaproteobacteriumAromatoleum aromaticumEbN1, which degrades a wide variety of aromatic compounds in the absence of oxygen under denitrifying growth conditions. The catabolic pathway of these amines was identified, starting with their oxidative deamination to the corresponding aldehydes, which are then further degraded via the enzymes of the phenylalanine or benzyl alcohol metabolic pathways. Two different periplasmic quinohemoprotein amine dehydrogenases involved in 2-PEA or BAm metabolism were identified and characterized. Both enzymes consist of three subunits, contain two hemeccofactors in their α-subunits, and exhibit extensive processing of their γ-subunits, generating four intramolecular thioether bonds and a cysteine tryptophylquinone (CTQ) cofactor. One of the enzymes was present in cells grown with 2-PEA or other substrates, showed an α2β2γ2composition, and had a rather broad substrate spectrum, which included 2-PEA, BAm, tyramine, and 1-butylamine. In contrast, the other enzyme was specifically induced in BAm-grown cells, showing an αβγ composition and activity only with BAm and 2-PEA. Since the former enzyme showed the highest catalytic efficiency with 2-PEA and the latter with BAm, they were designated 2-PEADH and benzylamine dehydrogenase (BAmDH). The catalytic properties and inhibition patterns of 2-PEADH and BAmDH showed considerable differences and were compared to previously characterized quinohemoproteins of the same enzyme family.IMPORTANCEThe known substrate spectrum ofA. aromaticumEbN1 is expanded toward aromatic amines, which are metabolized as sole substrates coupled to denitrification. The characterization of the two quinohemoprotein isoenzymes involved in degrading either 2-PEA or BAm expands the knowledge of this enzyme family and establishes for the first time that the necessary maturation of their quinoid CTQ cofactors does not require the presence of molecular oxygen. Moreover, the study revealed a highly interesting regulatory phenomenon, suggesting that growth with BAm leads to a complete replacement of 2-PEADH by BAmDH, which has considerably different catalytic and inhibition properties.


2012 ◽  
Vol 78 (18) ◽  
pp. 6647-6655 ◽  
Author(s):  
Yu Zhang ◽  
Jiao An ◽  
Wei Ye ◽  
Guangyu Yang ◽  
Zhi-Gang Qian ◽  
...  

ABSTRACTThe phosphotriesterase-like lactonase (PLL) enzymes in the amidohydrolase superfamily hydrolyze various lactones and exhibit latent phosphotriesterase activities. These enzymes serve as attractive templates forin vitroevolution of neurotoxic organophosphates (OPs) with hydrolytic capabilities that can be used as bioremediation tools. Here, a thermostable PLL fromGeobacillus kaustophilusHTA426 (GkaP) was targeted for joint laboratory evolution with the aim of enhancing its catalytic efficiency against OP pesticides. By a combination of site saturation mutagenesis and whole-gene error-prone PCR approaches, several improved variants were isolated. The most active variant, 26A8C, accumulated eight amino acid substitutions and demonstrated a 232-fold improvement over the wild-type enzyme in reactivity (kcat/Km) for the OP pesticideethyl-paraoxon. Concomitantly, this variant showed a 767-fold decrease in lactonase activity with δ-decanolactone, imparting a specificity switch of 1.8 × 105-fold. 26A8C also exhibited high hydrolytic activities (19- to 497-fold) for several OP pesticides, including parathion, diazinon, and chlorpyrifos. Analysis of the mutagenesis sites on the GkaP structure revealed that most mutations are located in loop 8, which determines substrate specificity in the amidohydrolase superfamily. Molecular dynamics simulation shed light on why 26A8C lost its native lactonase activity and improved the promiscuous phosphotriesterase activity. These results permit us to obtain further insights into the divergent evolution of promiscuous enzymes and suggest that laboratory evolution of GkaP may lead to potential biological solutions for the efficient decontamination of neurotoxic OP compounds.


2014 ◽  
Vol 58 (6) ◽  
pp. 3085-3090 ◽  
Author(s):  
Hosam M. Zowawi ◽  
Anna L. Sartor ◽  
Hanan H. Balkhy ◽  
Timothy R. Walsh ◽  
Sameera M. Al Johani ◽  
...  

ABSTRACTThe molecular epidemiology and mechanisms of resistance of carbapenem-resistantEnterobacteriaceae(CRE) were determined in hospitals in the countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic-resistant genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Sixty-two isolates which screened positive for potential carbapenemase production were assessed, and 45 were found to produce carbapenemase. The most common carbapenemases were of the OXA-48 (35 isolates) and NDM (16 isolates) types; 6 isolates were found to coproduce the OXA-48 and NDM types. No KPC-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with seven clusters of clonally relatedKlebsiella pneumoniae. Awareness of CRE in GCC countries has important implications for controlling the spread of CRE in the Middle East and in hospitals accommodating patients transferred from the region.


2015 ◽  
Vol 59 (7) ◽  
pp. 3966-3972 ◽  
Author(s):  
Matthew E. Wand ◽  
Kate S. Baker ◽  
Gabriel Benthall ◽  
Hannah McGregor ◽  
James W. I. McCowen ◽  
...  

ABSTRACTThe EGD Murray collection consists of approximately 500 clinical bacterial isolates, mainlyEnterobacteriaceae, isolated from around the world between 1917 and 1949. A number of these “Murray” isolates have subsequently been identified asKlebsiella pneumoniae. Antimicrobial susceptibility testing of these isolates showed that over 30% were resistant to penicillins due to the presence of diverseblaSHVβ-lactamase genes. Analysis of susceptibility to skin antiseptics and triclosan showed that while the Murray isolates displayed a range of MIC/minimal bactericidal concentration (MBC) values, the mean MIC value was lower than that for more modernK. pneumoniaeisolates tested. All Murray isolates contained the cation efflux genecepA, which is involved in disinfectant resistance, but those that were more susceptible to chlorhexidine were found to have a 9- or 18-bp insertion in this gene. Susceptibility to other disinfectants, e.g., H2O2, in the Murray isolates was comparable to that in modernK. pneumoniaeisolates. The Murray isolates were also less virulent inGalleriaand had a different complement of putative virulence factors than the modern isolates, with the exception of an isolate related to the modern lineage CC23. More of the modern isolates (41% compared to 8%) are classified as good/very good biofilm formers, but there was overlap in the two populations. This study demonstrated that a significant proportion of the MurrayKlebsiellaisolates were resistant to penicillins before their routine use. This collection of pre-antibiotic era isolates may provide significant insights into adaptation inK. pneumoniaein relation to biocide susceptibility.


2012 ◽  
Vol 56 (6) ◽  
pp. 3283-3287 ◽  
Author(s):  
Pierre Bogaerts ◽  
Carine Bebrone ◽  
Te-Din Huang ◽  
Warda Bouchahrouf ◽  
Yves DeGheldre ◽  
...  

ABSTRACTWe report the first description of the metallo-β-lactamase VIM-31, a new variant of VIM-2 with Tyr224His and His252Arg mutations, inEnterobacter cloacae11236, which was isolated from blood specimens of a patient with colonic adenocarcinoma in Belgium.blaVIM-31was found on a class 1 integron located on a self-transferable but not typeable 42-kb plasmid. Compared to values published elsewhere for VIM-2, the purified VIM-31 enzyme showed weaker catalytic efficiency against all the tested beta-lactam agents (except for ertapenem), resulting from lowerkcat(except for ertapenem) and higherKmvalues for VIM-31.


2012 ◽  
Vol 79 (3) ◽  
pp. 1052-1054 ◽  
Author(s):  
Dixie F. Mollenkopf ◽  
Jennifer M. Mirecki ◽  
Joshua B. Daniels ◽  
Julie A. Funk ◽  
Steven C. Henry ◽  
...  

ABSTRACTWe report the recovery ofEscherichia coliorKlebsiella pneumoniaecontaining the extended-spectrum β-lactamase geneblaCTX-Mfrom 24 of 1,495 (1.6%) swine fecal samples in 8 of 50 (16%) finishing barns located in 5 U.S. states. We did not detect an association between antimicrobial use and recovery ofblaCTX-M.


Sign in / Sign up

Export Citation Format

Share Document