Faculty Opinions recommendation of Balancing neuromuscular blockade versus preserved muscle activity.

Author(s):  
Brian Gehlbach ◽  
Snigdha Jain
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Tom Schepens ◽  
Koen Janssens ◽  
Sabine Maes ◽  
Davina Wildemeersch ◽  
Jurryt Vellinga ◽  
...  

Abstract Background The use of neostigmine after neuromuscular blockade (NMB) has been associated with postoperative respiratory complications. In previous studies, we found lower diaphragmatic activity after neostigmine reversal of NMB, compared to sugammadex. It is still unclear whether the adequate use of neostigmine guarantees normal respiratory muscle function after NMB. In this study, we wanted to assess the effect of commonly used degrees of NMB and their possible reversal strategies on respiratory muscle activity after the return of normal neuromuscular transmission. Methods This is a randomized, controlled, parallel-group, single-centre, double-blind study in patients scheduled for intracranial surgery at a tertiary academic hospital in Belgium. All participants received target controlled propofol/remifentanil anesthesia and were randomized into one of five groups, receiving either a shallow NMB with no reversal (shallow/saline), a shallow NMB with sugammadex reversal (shallow/sugammadex), a moderate NMB with neostigmine reversal (moderate/neostigmine), a moderate NMB with sugammadex reversal (moderate/sugammadex), or a deep NMB with sugammadex reversal (deep/sugammadex). Primary and secondary outcome parameters were diaphragm and intercostal electromyographic (EMG) activity at the moment of resumed spontaneous breathing activity, defined as a maximal interval of 10 min after the first spontaneous breath. Results For the five groups, a total of 55 patients could be included in the final analysis. Median time of spontaneous breathing analyzed was 5 min (IQR 3–9.5 min). Both the moderate/sugammadex and the moderate/neostigmine groups had lower levels of diaphragm EMG compared to the shallow/sugammadex group. The moderate/neostigmine group had lower levels of intercostal EMG activity compared to the shallow/saline group. Conclusions In this study, the depth of neuromuscular blockade and type of reversal strategy impacts respiratory muscle activity at the moment of resumed spontaneous breathing and recovery of neuromuscular blockade. Both groups that received moderate NMB had lower levels of diaphragm EMG, compared to the shallow NMB group with sugammadex reversal. Compared to the shallow NMB group with no reversal, the moderate NMB with neostigmine reversal group had lower intercostal EMG activity. Trial registration Clinicaltrials.gov NCT01962298 on October 9, 2013 and EudraCT 2013–001926-25 on October 10, 2013.


1985 ◽  
Vol 53 (6) ◽  
pp. 1517-1534 ◽  
Author(s):  
G. A. Robertson ◽  
L. I. Mortin ◽  
J. Keifer ◽  
P. S. Stein

A turtle with a complete transection of the spinal cord, termed a spinal turtle, exhibits three types or “forms” of the scratch reflex: the rostral scratch, pocket scratch, and caudal scratch (21). Each scratch form is elicited by tactile stimulation of a site on the body surface innervated by afferents entering the spinal cord caudal to the transection. We recorded electromyographic (EMG) potentials from the hindlimb during each of the three forms of the scratch in the spinal turtle (see Fig. 1). Common to all scratch forms is the rhythmic alternation of the activity of the hip protractor muscle (VP-HP) and hip retractor muscle (HR-KF). Each form of the scratch displays a characteristic timing of the activity of the knee extensor muscle (FT-KE) with respect to the cycle of activity of the hip muscles VP-HP and HR-KF. In a rostral scratch, activation of FT-KE occurs during the latter portion of VP-HP activation. In a pocket scratch, activation of FT-KE occurs during HR-KF activation. In a caudal scratch, activation of FT-KE occurs after the cessation of HR-KF activation. The timing characteristics of these muscle activity patterns correspond to the timing characteristics of changes in the angles of the knee joint and the hip joint obtained with movement analyses (21). We recorded electroneurographic (ENG) potentials from peripheral nerves of the hindlimb during each of the three forms of the “fictive” scratch in the spinal turtle immobilized with neuromuscular blockade (see Fig. 4). Common to all forms of the fictive scratch is the rhythmic alternation of the activity of hip protractor motor neurons (VP-HP) and hip retractor motor neurons (HR-KF). Each form displays a characteristic timing of the activity of knee extensor motor neurons (FT-KE) with respect to the cycle of VP-HP and HR-KF motor neuron activity. The timing characteristics of these motor neuron activity patterns are similar to the timing characteristics of the muscle activity patterns obtained in the preparation with movement (cf. Figs. 1 and 4). The motor pattern for each scratch form is generated centrally within the spinal cord. In the spinal immobilized preparation, neuromuscular blockade prevents both limb movement and phasic sensory input, and complete spinal transection isolates the cord from supraspinal input.(ABSTRACT TRUNCATED AT 400 WORDS)


1979 ◽  
Vol 47 (6) ◽  
pp. 1162-1168 ◽  
Author(s):  
A. De Troyer ◽  
J. Bastenier-Geens

The effect of submaximal neuromuscular blockade (SMNB) on lung and chest wall mechanics was studied in six normal, awake subjects infused with pancuronium. Measurements of static lung volumes, specific airway conductance (sGaw), maximum expiratory and inspiratory flow-volume (MEFV, MIFV) curves, and static pressure-volume (PV) curves of the lung and of the relaxed chest wall were obtained after lung recoil pressure (Pst(L)) at full inflation had been reduced to 60 +/- 10% of control. Inspiratory capacity was decreased, but residual volume was not increased. Inspiratory PV curve of the lung was not modified, and the observed decrease in expiratory compliance and the slight increase in Pst(L) during deflation were compatible with the altered lung volume history. SMNB did not modify sGaw nor the relationship between Pst(L) and MEF; by contrast it markedly reduced MIF rates. Finally, SMNB transposed the chest wall PV curve to higher levels on the pressure axis (it decreased the outward pull of the chest wall) without greatly affecting its slope, and thereby it reduced the resting level of the respiratory system. We conclude that 1) muscle weakness per se does not affect the eleastic properties of the lungs and airways, and 2) involuntary respiratory muscle activity influences the elastic recoil of the chest wall. We believe this muscle activity originates from muscle spindles, and lies essentially in the inspiratory portion of the intercostal musculature.


2015 ◽  
Vol 21 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Sami Hraiech ◽  
Takeshi Yoshida ◽  
Laurent Papazian

2002 ◽  
Vol 16 (2) ◽  
pp. 92-96
Author(s):  
Tiina Ritvanen ◽  
Reijo Koskelo ◽  
Osmo H„nninen

Abstract This study follows muscle activity in three different learning sessions (computer, language laboratory, and normal classroom) while students were studying foreign languages. Myoelectric activity was measured in 21 high school students (10 girls, 11 boys, age range 17-20 years) by surface electromyography (sEMG) from the upper trapezius and frontalis muscles during three 45-min sessions. Root mean square (RMS) average from both investigated muscles was calculated. The EMG activity was highest in both muscle groups in the computer-aided session and lowest in the language laboratory. The girls had higher EMG activity in both investigated muscle groups in all three learning situations. The measured blood pressure was highest at the beginning of the sessions, decreased within 10 min, but increased again toward the end of the sessions. Our results indicate that the use of a computer as a teaching-aid evokes more constant muscle activity than the traditional learning situations. Since muscle tension can have adverse health consequences, more research is needed to determine optimal classroom conditions, especially when technical aids are used in teaching.


2012 ◽  
Author(s):  
Ehsan Rashedi ◽  
Bochen Jia ◽  
Maury A. Nussbaum ◽  
Thurmon E. Lockhart

2003 ◽  
Author(s):  
Naomi F. Glasscock ◽  
Gary A. Mirka ◽  
Carolyn M. Sommerich ◽  
Katherine W. Klein

Sign in / Sign up

Export Citation Format

Share Document