Faculty Opinions recommendation of Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.

Author(s):  
George Truskey
2019 ◽  
Vol 10 ◽  
pp. 127-133 ◽  
Author(s):  
Takahito Minami ◽  
Takamichi Ishii ◽  
Kentaro Yasuchika ◽  
Ken Fukumitsu ◽  
Satoshi Ogiso ◽  
...  

2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Leonardo D’Aiuto ◽  
David C. Bloom ◽  
Jennifer N. Naciri ◽  
Adam Smith ◽  
Terri G. Edwards ◽  
...  

ABSTRACTHerpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1–human–CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCEThis study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1–CNS interactions in a human context.


2020 ◽  
pp. jmedgenet-2019-106608
Author(s):  
Xiaoliang Li ◽  
Guocheng Shi ◽  
Yang Li ◽  
Xiaoqing Zhang ◽  
Ying Xiang ◽  
...  

IntroductionCNV is a vital pathogenic factor of congenital heart disease (CHD). However, few CNVs have been reported for total anomalous pulmonary venous connection (TAPVC), which is a rare form of CHD. Using case-control study, we identified 15q11.2 deletion associated with TAPVC. We then used a TAPVC trio as model to reveal possible molecular basis of 15q11.2 microdeletion.MethodsCNVplex and Chromosomal Microarray were used to identify and validate CNVs in samples from 231 TAPVC cases and 200 healthy controls from Shanghai Children’s Medical Center. In vitro cardiomyocyte differentiation of induced pluripotent stem cells from peripheral blood mononuclear cells for a TAPVC trio with paternal inherited 15q11.2 deletion was performed to characterise the effect of the deletion on cardiomyocyte differentiation and gene expression.ResultsThe 15q11.2 microdeletion was significantly enriched in patients with TAPVC compared with healthy control (13/231 in patients vs 0/200 in controls, p=5.872×10−2, Bonferroni adjusted) using Fisher’s exact test. Induced pluripotent stem cells from the proband could not differentiate into normal cardiomyocyte. Transcriptomic analysis identified a number of differentially expressed genes in the 15q11.2 deletion carriers of the family. TAPVC disease-causing genes such as PITX2, NKX2-5 and ANKRD1 showed significantly higher expression in the proband compared with her healthy mother. Knockdown of TUBGCP5 could lead to abnormal cardiomyocyte differentiation.ConclusionWe discovered that the 15q11.2 deletion is significantly associated with TAPVC. Gene expression profile that might arise from 15q11.2 deletion for a TAPVC family was characterised using cell experiments.


2016 ◽  
Vol 5 (1) ◽  
pp. 235-248 ◽  
Author(s):  
Nora Freyer ◽  
Fanny Knöspel ◽  
Nadja Strahl ◽  
Leila Amini ◽  
Petra Schrade ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 926-935 ◽  
Author(s):  
Hyoe Komae ◽  
Hidekazu Sekine ◽  
Izumi Dobashi ◽  
Katsuhisa Matsuura ◽  
Minoru Ono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document