Faculty Opinions recommendation of Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy.

Author(s):  
Kathryn North ◽  
Jane Seto
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Niclas E. Bengtsson ◽  
John K. Hall ◽  
Guy L. Odom ◽  
Michael P. Phelps ◽  
Colin R. Andrus ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Menglong Chen ◽  
Hui Shi ◽  
Shixue Gou ◽  
Xiaomin Wang ◽  
Lei Li ◽  
...  

Abstract Background Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. Methods In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46–54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Results Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. Conclusions We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.


2016 ◽  
Vol 24 ◽  
pp. S191
Author(s):  
Christopher Nelson ◽  
Matthew Gemberling ◽  
Chady H. Hakim ◽  
David G. Ousterout ◽  
Pratiksha I. Thakore ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Courtney S. Young ◽  
Ekaterina Mokhonova ◽  
Marbella Quinonez ◽  
April D. Pyle ◽  
Melissa J. Spencer

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Alex C Chang ◽  
Sang-Ging Ong ◽  
Joseph Wu ◽  
Helen M Blau

Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disease that is result of mutations in the dystrophin gene and is the most common myopathic disease in humans with a prevalence of one in every 3500 males. Dystrophin is crucial for the formation of a dystrophin-glycoprotein complex (DGC), which connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix in both skeletal and cardiac muscles. In the heart, loss of dystrophin leads to increased fibrosis and death in the third decade of life due to dilated cardiomyopathy. A conundrum in studying and developing therapies for DMD has been the lack of a mouse model that fully recapitulates the clinical phenotype, as mice that lack dystrophin (mdx model), unlike patients, exhibit only mild skeletal muscle defects, essentially no cardiac defects and have a relatively normal lifespan. Our lab reasoned that the difference in the manifestation of the disease in mice and humans could be telomere length, as mice have substantially longer telomeres than humans. We created a novel mouse model with shortened telomere lengths (similar to humans) that fully recapitulates the skeletal muscle (Cell. 2010;143:1059-1071; the mdx/mTRKO model) and cardiac muscle phenotype of DMD (Nat Cell Biol. 2013; 15:895-904; dilated cardiomyopathy). Interestingly, we observed a relative 45% reduction in cardiomyocyte telomere length in our mdx/mTRKO animals (3 animals per group, N = 300-400) as well as patient samples (4 DMD patient samples, N = 40-95). Here we present new evidence of mitochondrial dysfunction and telomere dysfunction.


Sign in / Sign up

Export Citation Format

Share Document