frame shift
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 47)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 22 (20) ◽  
pp. 10927
Author(s):  
Da-Hye Kim ◽  
Jundae Lee ◽  
JuHee Rhee ◽  
Jong-Yeol Lee ◽  
Sun-Hyung Lim

The red or purple color of radish (Raphanus sativus L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of RsMYB1, named RsMYB1Short, in radish cultivars with white taproots. The RsMYB1Short allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1Full, RsMYB1Short was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for RsMYB1Short in radish cotyledons failed to induce anthocyanin accumulation, but that for RsMYB1Full activated it. Additionally, RsMYB1Short showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while RsMYB1Full promoted both processes when co-expressed with RsTT8 in tobacco leaves. As the result of the transient assay, co-expressing RsTT8 and RsMYB1Full, but not RsMYB1Short, also enhanced the promoter activity of RsCHS and RsDFR. We designed a molecular marker for RsMYB1 genotyping, and revealed that the RsMYB1Short allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1Short, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aditi Gupta ◽  
David Alland

AbstractMycobacterium tuberculosis can adapt to changing environments by non-heritable mechanisms. Frame-shifting insertions and deletions (indels) may also participate in adaptation through gene disruption, which could be reversed by secondary introduction of a frame-restoring indel. We present ScarTrek, a program that scans genomic data for indels, including those that together disrupt and restore a gene’s reading frame, producing “frame-shift scars” suggestive of reversible gene inactivation. We use ScarTrek to analyze 5977 clinical M. tuberculosis isolates. We show that indel frequency inversely correlates with genomic linguistic complexity and varies with gene-position and gene-essentiality. Using ScarTrek, we detect 74 unique frame-shift scars in 48 genes, with a 3.74% population-level incidence of unique scar events. We find multiple scars in the ESX-1 gene cluster. Six scars show evidence of convergent evolution while the rest shared a common ancestor. Our results suggest that sequential indels are a mechanism for reversible gene silencing and adaptation in M. tuberculosis.


Author(s):  
Mona L. Essawi ◽  
Ekram M. Fateen ◽  
Hanan A. Atia ◽  
Noura R. Eissa ◽  
Eman H. Aboul-Ezz ◽  
...  

Abstract Background Mucolipidosis II (ML II α/β) is an inherited lysosomal storage disorder caused by deficiency of GlcNAc-phosphotransferase enzyme and results in mis-targeting of multiple lysosomal enzymes. Affected patients are characterized by skeletal deformities and developmental delay. Homozygous or compound heterozygous mutations in GNPTAB gene are associated with the clinical presentation. This is the first study to characterize the underlying genetics of ML among a cohort of Egyptian patients. ML II diagnosis established by clinical assessment, biochemical evaluation of enzymes, electron microscopy examination of gingival inclusion bodies, and molecular study of GNPTAB gene using targeted next-generation sequencing panel in 8 patients form 8 unrelated Egyptian families. Results Sequencing revealed 3 mutations in GNPTAB gene; 1 novel frame-shift mutation in exon 19 (c.3488_3488delC) and 2 previously reported mutations (c.1759C>T in exon 13 and c.3503_3504delTC in exon 19). All patients were homozygous for their corresponding mutations and the parents were consanguineous. Conclusions According to the established quaternary diagnostic scheme, ML II was the final diagnosis in eight patients. The most common mutation was the frame shift c.3503_3504delTC mutation, found in 5 patients and associated with a severe phenotype.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Kishimoto ◽  
Iori Nishiura ◽  
Wataru Hirata ◽  
Shunsuke Yuri ◽  
Nami Yamamoto ◽  
...  

AbstractE26 avian leukemia oncogene 2, 3′ domain (Ets2) has been implicated in various biological processes. An Ets2 mutant model (Ets2db1/db1), which lacks the DNA-binding domain, was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair and curly whiskers. Here, we generated new Ets2 mutant models with a frame-shift mutation in exon 8 using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as embryonic development stopped before E8.5, as previously reported. When we rescued them by tetraploid complementation, these mice did not exhibit wavy hair or curly whisker phenotypes. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 Ets2em1/em1 embryos. This exon 8-skipped Ets2 mRNA was translated into protein, suggesting that this Ets2 mutant protein complemented the Ets2 function in the skin. Our data implies that novel splicing variants incidentally generated after genome editing may complicate the phenotypic analysis but may also give insight into the new mechanisms related to biological gene functions.


Author(s):  
Nayeralsadat Fatemi ◽  
Pierre F. Ray ◽  
Fariba Ramezanali ◽  
Tina Shahani ◽  
Amir Amiri-Yekta ◽  
...  

2021 ◽  
Vol 42 (4) ◽  
pp. 1641-1641
Author(s):  
Mengqi Zhang ◽  
Haojun Yang ◽  
Zhuohui Chen ◽  
Yishu Fan ◽  
Xinhang Hu ◽  
...  

Author(s):  
Mengqi Zhang ◽  
Haojun Yang ◽  
Zhuohui Chen ◽  
Yishu Fan ◽  
Xinhang Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document