Faculty Opinions recommendation of Effect of Therapeutic Hypothermia Initiated After 6 Hours of Age on Death or Disability Among Newborns With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial.

Author(s):  
Michael Johnston
2017 ◽  
Vol 221 (05) ◽  
pp. 216-216

Shankaran S et al. Effect of Depth and Duation of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial. JAMA 2017; 318: 57–67 Eine innerhalb von 6 Stunden nach der Geburt begonnene Hypothermiebehandlung (33,5ºC über 72 Stunden) kann bei reifen Neugeborenen mit mäßiger bis schwerer hypoxisch-ischämischen Enzephalopathie (HIE) die Mortalität sowie das Risiko für Behinderungen senken. US-Wissenschaftler haben nun untersucht, ob durch eine Verlängerung der Kühlungsdauer und/oder ein tieferes Absenken der Temperatur eine weitere Prognoseverbesserung zu erreichen ist.


2013 ◽  
Vol 14 (8) ◽  
pp. 786-795 ◽  
Author(s):  
Dorothea D. Jenkins ◽  
Timothy Lee ◽  
Cody Chiuzan ◽  
Jessica K. Perkel ◽  
Laura Grace Rollins ◽  
...  

Author(s):  
Jerry Hsu ◽  
Noreen Shaikh ◽  
Hantamalala Ralay Ranaivo ◽  
Andrea C. Pardo ◽  
Rebecca B. Mets-Halgrimson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim V. Annink ◽  
Linda S. de Vries ◽  
Floris Groenendaal ◽  
Rian M. J. C. Eijsermans ◽  
Manouk Mocking ◽  
...  

AbstractThe mammillary bodies (MB) and hippocampi are important for memory function and are often affected following neonatal hypoxic ischemic encephalopathy (HIE). The aim of this study was to assess neurodevelopmental outcome in 10-year-old children with HIE with and without therapeutic hypothermia. Additional aims were to assess the associations between MB atrophy, brain volumes (including the hippocampi), white matter microstructure and neurodevelopmental outcome at school-age. Ten-year-old children with HIE were included, who were treated with therapeutic hypothermia (n = 22) or would have qualified but were born before this became standard of care (n = 28). Children completed a neuropsychological and motor assessment and MRI. Mammillary bodies were scored as normal or atrophic at 10 years. Brain volumes were segmented on childhood MRI and DTI scans were analysed using tract-based spatial statistics. Children with HIE suffered from neurocognitive and memory problems at school-age, irrespective of hypothermia. Hippocampal volumes and MB atrophy were associated with total and performance IQ, processing speed and episodic memory in both groups. Normal MB and larger hippocampi were positively associated with global fractional anisotropy. In conclusion, injury to the MB and hippocampi was associated with neurocognition and memory at school-age in HIE and might be an early biomarker for neurocognitive and memory problems.


2020 ◽  
Vol 21 (18) ◽  
pp. 6801
Author(s):  
Viktória Kovács ◽  
Gábor Remzső ◽  
Valéria Tóth-Szűki ◽  
Viktória Varga ◽  
János Németh ◽  
...  

Hypoxic-ischemic encephalopathy (HIE) is still a major cause of neonatal death and disability as therapeutic hypothermia (TH) alone cannot afford sufficient neuroprotection. The present study investigated whether ventilation with molecular hydrogen (2.1% H2) or graded restoration of normocapnia with CO2 for 4 h after asphyxia would augment the neuroprotective effect of TH in a subacute (48 h) HIE piglet model. Piglets were randomized to untreated naïve, control-normothermia, asphyxia-normothermia (20-min 4%O2–20%CO2 ventilation; Tcore = 38.5 °C), asphyxia-hypothermia (A-HT, Tcore = 33.5 °C, 2–36 h post-asphyxia), A-HT + H2, or A-HT + CO2 treatment groups. Asphyxia elicited severe hypoxia (pO2 = 19 ± 5 mmHg) and mixed acidosis (pH = 6.79 ± 0.10). HIE development was confirmed by altered cerebral electrical activity and neuropathology. TH was significantly neuroprotective in the caudate nucleus but demonstrated virtually no such effect in the hippocampus. The mRNA levels of apoptosis-inducing factor and caspase-3 showed a ~10-fold increase in the A-HT group compared to naïve animals in the hippocampus but not in the caudate nucleus coinciding with the region-specific neuroprotective effect of TH. H2 or CO2 did not augment TH-induced neuroprotection in any brain areas; rather, CO2 even abolished the neuroprotective effect of TH in the caudate nucleus. In conclusion, the present findings do not support the use of these medical gases to supplement TH in HIE management.


2017 ◽  
Vol 176 (10) ◽  
pp. 1295-1303 ◽  
Author(s):  
Hemananda Muniraman ◽  
Danielle Gardner ◽  
Jane Skinner ◽  
Anna Paweletz ◽  
Anitha Vayalakkad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document