Faculty Opinions recommendation of Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division.

Author(s):  
Sergei Sokol ◽  
Chih-Wen Chu
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Cuie Chen ◽  
Ryan Cummings ◽  
Aghapi Mordovanakis ◽  
Alan J Hunt ◽  
Michael Mayer ◽  
...  

Asymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome’s role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.


2018 ◽  
Author(s):  
Cuie Chen ◽  
Ryan Cummings ◽  
Aghapi Mordovanakis ◽  
Alan J Hunt ◽  
Michael Mayer ◽  
...  

2017 ◽  
Author(s):  
Cuie Chen ◽  
Ryan Cummings ◽  
Aghapi Mordovanakis ◽  
Alan J. Hunt ◽  
Michael Mayer ◽  
...  

AbstractAsymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome’s role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.


Author(s):  
Amelia J. Kim ◽  
Erik E. Griffin

PLK1 is a conserved mitotic kinase that is essential for the entry into and progression through mitosis. In addition to its canonical mitotic functions, recent studies have characterized a critical role for PLK-1 in regulating the polarization and asymmetric division of the one-cell C. elegans embryo. Prior to cell division, PLK-1 regulates both the polarization of the PAR proteins at the cell cortex and the segregation of cell fate determinants in the cytoplasm. Following cell division, PLK-1 is preferentially inherited to one daughter cell where it acts to regulate the timing of centrosome separation and cell division. PLK1 also regulates cell polarity in asymmetrically dividing Drosophila neuroblasts and during mammalian planar cell polarity, suggesting it may act broadly to connect cell polarity and cell cycle mechanisms.


Sign in / Sign up

Export Citation Format

Share Document