Faculty Opinions recommendation of Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defenses in Maize.

Author(s):  
Ying-Bo Mao
2018 ◽  
Vol 44 (7-8) ◽  
pp. 700-700 ◽  
Author(s):  
Jie Wang ◽  
Mingyu Yang ◽  
Yuanyuan Song ◽  
Flor E. Acevedo ◽  
Kelli Hoover ◽  
...  

2018 ◽  
Vol 44 (7-8) ◽  
pp. 690-699 ◽  
Author(s):  
Jie Wang ◽  
Mingyu Yang ◽  
Yuanyuan Song ◽  
Flor E. Acevedo ◽  
Kelli Hoover ◽  
...  

2018 ◽  
Vol 115 (20) ◽  
pp. 5199-5204 ◽  
Author(s):  
Ching-Wen Tan ◽  
Michelle Peiffer ◽  
Kelli Hoover ◽  
Cristina Rosa ◽  
Flor E. Acevedo ◽  
...  

Obligate symbioses occur when organisms require symbiotic relationships to survive. Some parasitic wasps of caterpillars possess obligate mutualistic viruses called “polydnaviruses.” Along with eggs, wasps inject polydnavirus inside their caterpillar hosts where the hatching larvae develop inside the caterpillar. Polydnaviruses suppress the immune systems of their caterpillar hosts, which enables egg hatch and wasp larval development. It is unknown whether polydnaviruses also manipulate the salivary proteins of the caterpillar, which may affect the elicitation of plant defenses during feeding by the caterpillar. Here, we show that a polydnavirus of the parasitoid Microplitis croceipes, and not the parasitoid larva itself, drives the regulation of salivary enzymes of the caterpillar Helicoverpa zea that are known to elicit tomato plant-defense responses to herbivores. The polydnavirus suppresses glucose oxidase, which is a primary plant-defense elicitor in the saliva of the H. zea caterpillar. By suppressing plant defenses, the polydnavirus allows the caterpillar to grow at a faster rate, thus improving the host suitability for the parasitoid. Remarkably, polydnaviruses manipulate the phenotypes of the wasp, caterpillar, and host plant, demonstrating that polydnaviruses play far more prominent roles in shaping plant–herbivore interactions than ever considered.


2017 ◽  
Vol 214 (3) ◽  
pp. 1294-1306 ◽  
Author(s):  
Jie Wang ◽  
Michelle Peiffer ◽  
Kelli Hoover ◽  
Cristina Rosa ◽  
Rensen Zeng ◽  
...  

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

<p>The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity.</p> <p>Keywords:Antimicrobial,Sponges associated bacteria,MICs</p>


Sign in / Sign up

Export Citation Format

Share Document