gall induction
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 1)

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 861
Author(s):  
Qian Zhao ◽  
Ling-Ling Jiang ◽  
Jie Guo ◽  
Dong-Kang Zhang ◽  
Hong-Ying Hu

Saxaul is a kind of dominant perennial psammophyte that widely distributes in arid and semi-arid desert areas, and it has multiple functions in preventing desertification, especially in windbreak and sand fixation. Various gall inducers induce galls on the saxaul, including the flower-like gall. Parasitoids have great potentiality in controlling gall inducers. However, studies about gall inducers and parasitoids of flower-like galls on Haloxylon, as well as the parasitic efficacy of the parasitoids, are rarely reported. In this study, the flower-like galls were observed on Haloxylon ammodendron and H. persicum in Fukang, Xinjiang, China. Two types of flower-like galls were found on H. ammodendron, while only one type was found on H. persicum. In total, five species of gall inducers and three species of parasitoids were obtained from the galls mentioned above. All the galls were induced by Caillardia (Hemiptera: Aphalaridae), which were mostly bivoltine in Fukang. Besides, their parasitoids Psyllaephagus caillardiae and P. longiventris could be observed on all the types of galls. Additionally, correlative studies on the parasitization indexes demonstrated that all the dominant parasitoids of diverse flower-like galls were P. caillardiae, which were slightly more in number than the P. ogazae discovered in the flower bud-like galls. In addition, the relevance between the emergence or lifespan of parasitoids and temperature was also investigated. The results showed that the number of parasitoids emerging decreased rapidly after a period of enhancement with the increase of temperature, including an optimum temperature, while the lifespan of wasps gradually shortened with the temperature rising. Our results highlight the importance of the biological investigation of parasitoids in the gall inducers lived in closed galls, which may provide critical evidence for us to understand its potential application in biological control.


2021 ◽  
Vol 22 (17) ◽  
pp. 9424
Author(s):  
Seiji Takeda ◽  
Tomoko Hirano ◽  
Issei Ohshima ◽  
Masa H. Sato

Galls are characteristic plant structures formed by cell size enlargement and/or cell proliferation induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to insects. To form unique gall structures, gall-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development remain largely unknown due to the difficulties associated with the study of non-model plants in the wild. Recent advances in next-generation sequencing have allowed us to determine the biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the adaptive significance of galls for insects and plants. Thereafter, we summarize recent progress regarding the molecular aspects of insect gall formation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Louis Nastasi ◽  
Andrew Deans

Cynipidae (Hymenoptera: Cynipoidea) is a diverse group of wasps, many of which are capable of inducing plants to make galls, novel structures that protect and nourish the wasps' larvae. Other cynipids, especially those species in Ceroptresini and Synergini, are understood to be usurpers of galls made by other cynipids. The North American cynipid fauna has not been fully catalogued since 1979, but there is renewed interest in revising the taxonomy and in doing research that sheds light on the mechanisms of gall induction, the evolution of this life history, and their ecological interactions more broadly. Significant taxonomic changes have impacted the group since 1979, thereby warranting a new catalogue. The current state of knowledge of species classified in Aulacideini, Ceroptresini, Diastrophini, Diplolepidini, Phanacidini and Synergini in the United States, Canada, and Mexico is summarised in catalogue format. We report 323 names, including 170 valid species of rose gall wasps, herb gall wasps, and inquiline gall wasps, classified in 12 genera, from the United States, Canada, and Mexico. Current taxonomic status, distribution, host associations, and vernacular names are listed for each species. The catalogue also includes the original description of galls for many species of gall-inducer, as well as atomised characterisations of different gall traits as key-value pairs. For most galling species without existing vernacular names, new vernacular names are proposed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Valery A. Korneyev

The molecular-based phylogenetic analysis of the subfamily Tephritinae, the subfamily that contains almost all the cecidogenous species of the family Tephritidae, has reassigned several tribes and groups of genera and modified their concepts based on morphology alone to other tribes and, thus, changed the hypothetical scenarios of evolution of fly/host–plant relations and, in particular, the gall induction in different phylogenetic lineages. Gall induction is shown to arise independently within the Myopitini (in two lineages), Cecidocharini, Tomoplagia group of genera, Eurostini, Eutreta, Tephritis group of genera, Platensinini, Campiglossa group of genera, and Sphenella group of genera independently and more or less synchronously due to the shift to host plants with smaller flower heads and sensitive to larval feeding causing tissue proliferation. This was possibly a result of temporary aridization of the grassy biomes in the Nearctic and Afrotropic regions in the late Miocene or early Pliocene.


2021 ◽  
Vol 9 ◽  
Author(s):  
Renee M. Borges

The ancient interaction between figs (Ficus, Moraceae) and their pollinating fig wasps is an unusual example of a mutualism between plants and gall-inducing insects. This review intends to offer fresh perspectives into the relationship between figs and the diversity of gall-inducing sycophiles which inhabit their enclosed globular inflorescences that function as microcosms. Besides gall-inducing pollinators, fig inflorescences are also inhabited by other gall-inducing wasps. This review evaluates the state of current knowledge on gall-induction by fig wasps and exposes the many lacunae in this area. This review makes connections between fig and gall-inducing wasp traits, and suggests relatively unexplored research avenues. This manuscript calls for an integrated approach that incorporates such diverse fields as life-history theory, plant mate choice, wasp sexual selection and local mate competition, plant embryology as well as seed and fruit dispersal. It calls for collaboration between researchers such as plant developmental biologists, insect physiologists, chemical ecologists and sensory biologists to jointly solve the many valuable questions that can be addressed in community ecology, co-evolution and species interaction biology using the fig inflorescence microcosm, that is inhabited by gall-inducing mutualistic and parasitic wasps, as a model system.


Author(s):  
Antoine Guiget ◽  
Seiji Takeda ◽  
Tomoko Hirano ◽  
Ohishima Issei ◽  
Masa H. Sato

Galls are characteristic plant structures formed by hypertrophy (excessive increase in cell size) and/or hyperplasia (cell proliferation) induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to the insects. To form unique gall structures, all-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development is still largely unknown because of the difficulty of studying non-model plants in the wild. Recent progress in next-generation sequencing has allowed us to determine the structure of biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the evolutionary aspects of gall-inducing life histories and their adaptive significance for insects and plants. Then, we briefly summarize recent progress regarding the molecular aspects of insect gall formation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lilach Kurzfeld-Zexer ◽  
Moshe Inbar

Abstract Background Interspecific interactions among insect herbivores are common and important. Because they are surrounded by plant tissue (endophagy), the interactions between gall-formers and other herbivores are primarily plant-mediated. Gall-forming insects manipulate their host to gain a better nutrient supply, as well as physical and chemical protection form natural enemies and abiotic factors. Although often recognized, the protective role of the galls has rarely been tested. Results Using an experimental approach, we found that the aphid, Smynthurodes betae, that forms galls on Pistacia atlantica leaves, is fully protected from destruction by the folivorous processionary moth, Thaumetopoea solitaria. The moth can skeletonize entire leaves on the tree except for a narrow margin around the galls that remains intact (“trimmed galls”). The fitness of the aphids in trimmed galls is unharmed. Feeding trials revealed that the galls are unpalatable to the moth and reduce its growth. Surprisingly, S. betae benefits from the moth. The compensatory secondary leaf flush following moth defoliation provides new, young leaves suitable for further gall induction that increase overall gall density and reproduction of the aphid. Conclusions We provide experimental support for the gall defense hypothesis. The aphids in the galls are protracted by plant-mediated mechanisms that shape the interactions between insect herbivores which feed simultaneously on the same host. The moth increase gall demsity on re-growing defoliated shoots.


2021 ◽  
Author(s):  
Louis Nastasi ◽  
Andrew Deans

Cynipidae (Hymenoptera: Cynipoidea) is a diverse group of wasps, many of which are capable of inducing plants to make novel structures, galls, that protect and nourish the wasps' larvae. Other cynipids, especially those species in Ceroptresini and Synergini, are understood to be usurpers of galls made by other cynipids. The North American cynipid fauna has not been fully cataloged since 1979, but there is renewed interest in revising the taxonomy and in doing research that sheds light on the mechanisms of gall induction, the evolution of this life history, and their ecological interactions more broadly. Significant taxonomic changes have impacted the group since 1979, thereby warranting a new catalog. The current state of knowledge of species classified in Aulacideini, Ceroptresini, Diastrophini, Diplolepidini, Phanacidini, and Synergini in the United States, Canada, and Mexico is summarized in catalog format. We report 323 names, including 170 valid species of rose gall wasps, herb gall wasps, and inquiline gall wasps, classified in 12 genera, from the United States, Canada, and Mexico. Current taxonomic status, distribution, host associations, and vernacular names are listed for each species. The catalog also includes the original description of galls for many species of gall-inducer, as well as atomized characterizations of different gall traits as key-value pairs. For most galling species without existing vernacular names, new vernacular names are proposed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
P. P. Anand ◽  
N. Ramani

Abstract Background Galls or the neoplastic growth on plants result from a complex type of interaction between the inducers (Acari, Insects, Microbes and Nematodes) and plants. The present study sheds light on the gall inducing habit of a highly host specific eriophyid mite, Aceria pongamiae, on the leaves of Pongamia pinnata leading to the production of abnormal pouch like outgrowths on the adaxial and abaxial surfaces of the foliage. Each leaf gall is a highly complex, irregular massive structure, and the formation of which often leads to complete destruction of leaves, especially during heavy mite infestation, and thereby adversely affecting the physiology and growth of the host plant. Results The study was carried out by making comparative observations on FE-SEM histological sections of galls representing four different growth stages categorized on the basis of difference in age groups. Apart from variations in cell metaplasia, a dramatic change was observed in the abaxial-adaxial polarity of the laminar surfaces also throughout the developmental sequence of galls, in all the four growth stages. Significant variations could be observed in the anti-oxidative potency as well as elemental composition in the all the four age groups of galls, and also revealed ATR-FTIR pattern of gall formation. Conclusion Being the first attempt to unravel the mystery of gall induction by eriophyids in general and by A. pongamiae in particular, on its host plant P.pinnata, by shedding light on the structural and histological alterations taking place during leaf gall formation under the influence of the mite, the current study is to be treated as the model of plant-animal interactive system.


Zootaxa ◽  
2020 ◽  
Vol 4881 (1) ◽  
pp. 73-82
Author(s):  
CHRISTER HANSSON

Two new species of Sporrongia Gumovsky (Eulophidae: Entedoninae), S. marginata sp. nov. from Costa Rica and Mexico, and S. niveicornis sp. nov. from Peru, are described and compared to the single previously known species, S. tobagoiensis Gumovsky. Sporrongia marginata has been reared from galls on the legume Andira inermis (Leguminosae). This is the first biological record for the genus and an indirect indication of possible gall induction by S. marginata.


Sign in / Sign up

Export Citation Format

Share Document